
CONTENTS

Number 1 JANUARY-JUNE, 2018Volume 10

ARYABHATTA  JOURNAL  OF  MATHEMATICS  &  INFORMATICS

ISSN (Print) : 0975-7139 , ISSN (Online) : 2394-9309

17-24

25-32

33-38

39-44

45-58

115-124

125-132

133-138

139-146

147-150

151-158

159-162

191-198

RESOLVING  NUMBER  OF  EDGE  CYCLE  GRAPHS
J. Paulraj Joseph, N. Shunmugapriya

MELLIN AND LAPLACE TRANSFORMS INVOLVING THE 
PRODUCT  OF  STRUVE'S  FUNCTION  AND  I-FUNCTION 
OF  TWO  VARIABLES
B. Satyanarayana, B.V. Purnima & Y. Pragathi Kumar

ANALYSIS OF HOT STANDBY DATABASE SYSTEM WITH 
STANDBY  UNIT  UNDER  CONSTANT  OBSERVATION
Amit Manocha, Sukhvir Singh & Anil Taneja

A COMMON FIXED POINT THEOREM USING COMPATIBILITY 
OF  TYPE (A-1)  AND  WEAKLY  COMPATIBILITY
V. Nagaraju, Bathini Raju

ON  LOWER  SEPERATION  AXIOMS  VIA IDEALS
Nitakshi Goyal, Navpreet Singh Noorie

RELIABILITY AND PROFIT ANALYSIS OF A SYSTEM WITH 
INSTRUCTION, REPLACEMENT AND TWO OF THE THREE 
TYPES  OF  REPAIR  POLICY
Rashmi Gupta

WEAK ISOMORPHISM ON BI-POLAR TOTAL FUZZY GRAPH
M. Vijaya, V. Mekala

APPLICATIONS OF STABLE SET PROBLEMS IN 
HYPERGRAPH
A. Ramesh Kumar,  G. Kavitha

A SURVEY OF E – SUPER VERTEX MAGIC LABELINGNESS 
AND V – SUPER  VERTEX  MAGIC  LABELINGNESS 
Seema Mehra and Neelam Kumari

Q-HYPERCONVEXITY IN T -ULTRA-QUASI-METRIC 0

SPACES  AND  EXISTENCE OF  FIXED  POINT  THEOREMS
Qazi Aftab Kabir, Ramakant Bhardwaj, Rizwana Jamal & 
Masroor Mohammad

COMPUTATION OF AUGMENTED ZAGREB INDEX AND 
THEIR POLYNOMIAL OF CERTAIN CLASS OF WINDMILL 
GRAPHS
B. Chaluvaraju and S. A. Diwakar

POWER GRAPH OF SOME FINITE GROUPS Z  AND C   OF n n

PRIME ORDER
Ajay Kumar, Manju Pruthi

APPROXIMATION OF THE CUBIC FUNCTIONAL EQUATION 
IN  RANDOM  NORMED  SPACES : DIRECT AND 
FIXED POINT METHOD
Nawneet Hooda, Shalini Tomar

CENTRAL TENDENCY OF ANNUAL EXTREMUM OF  
AMBIENT  AIR  TEMPERATURE  AT  DHUBRI
Rinamani Sarmah Bordoloi,  Dhritikesh Chakrabarty

C–COMPLEX  MATRIX  COMPLETION  PROBLEM
  M. S. Ponmudi  & A. Ramesh Kumar

59-66

67-76

77-82

83-88

89-94

A  STUDY ON  RE-MANUFACTURING OF USED  PRODUCTS 
IN  A  VENDOR-BUYER SUPPLY CHAIN
W. Ritha and J. C. Eveline

MATHEMATICAL PRINCIPLES IN VEDAS AND PURANAS 
AND ITS  APPLICATIONS
A. K. Sah

STUDY ON FUZZY g*- SEMI INTERIOR AND FUZZY � � � � � � � � � � � � � � � � � � � �

g*- SEMI CLOSURE
M. Vijaya,  M. Rajesh

WEAKLY COMPATIBLE MAPS AND COMMON COUPLED 
FIXED POINT THEOREMS IN GENERALIZED FUZZY 
METRIC SPACE
Seema Mehra

HYPER-ASYMPTOTIC CURVES ON A KAEHLERIAN  
HYPER-SURFACE
U. S. Negi 

COMPARATIVE ANALYSIS OF TWO RELIABILITY MODELS 
WITH REGARD TO PROVISION OF ASSISTANT 
REPAIRMAN  AND  DISCUSSION  TIME
Anil Kumar Taneja

ON  A  NEW  SUMMATION  FORMULA  FOR 
THE  H-FUNCTION
Vivek Rohira, Shantha Kumari. K. &  Arjun K. Rathie

CHARACTERISTICS OF RIEMANNIAN  MANIFOLDS 
AND PSEUDO- RIEMANNIAN  METRIC
K.C. Petwal and Kulveer Singh Rana

COMPARATIVE STUDY OF EFFECTS OF RAMP ANGLE ON 
THE NON-LINEAR PASSIVE DYNAMIC WALKING OF 
KNEED  AND KNEE-LESS  BIPED  ROBOT
Mahesh A. Yeolekar

MATHEMATICAL MODEL OF POPULATION DYNAMICS  
AND  GROWTH  IN  INDIA 
Dr. Shankar Lal

COMMON FIXED POINT THEOREMS FOR OCCASIONALLY 
WEAKLY COMPATIBLE MAPPINGS SATISFYING IMPLICIT 
RELATION  IN  MODULAR  METRIC  SPACES
Prerna Pathak, Aklesh Pariya, V. H. Badshah & Nirmala 
Gupta

EVOLUTIONARY COMPUTATIONAL ALGORITHM AND  ANN 
SUPERVISED CLASSIFIER FOR MICRO-ARRAY GENE 
EXPRESSION  DATA
Manaswini Pradhan

95-98

99-114

01-16

163-172

179-190

173-178

199-208

209-216

217-230



 About 10 years back, a group of enthusiastic professors, mathematicians, economists and 
researchers from different institutes of higher learning gathered together under the registered 
trust/society ‘Aryans Research and Educational Trust’ and decided to promote research activities in 
interdisciplinary approach through a research journal. The title of journal was named as ‘Aryabhatta 
Journal of Mathematics & Informatics’ (AJMI) in honor of ancient famous mathematical scientist. 
‘Aryabhatta’ (born in 5th century) who for the first time established the healthy tradition of scientific 
research in India discarding the traditional way of thinking. The responsibility for registration, title 
approval, getting ISSN No. and to act as Editor in chief was assigned to me. On completing all the 
formalities, the first issue of the journal was published in year 2009. Since then and till today the journal 
is publishing regularly well in time. It gives us a great pleasure to put forward before the scholars and 
academicians that The Journal from its start is making an effort to produce good quality articles. The 
credit goes to its editorial and reviewer team which review sincerely and furnish valuable suggestions to 
improve its quality. We are proud to mention that AJMI is among 50 Indian journals (Rank 10) based on 
citation per year from foreign countries (table 3.5 on page 30, a report based on Indian Citation Index 
2016 under supervision of Sh. Prakash Chand, Scientist NISCAIR-CSIR and Head ICI). The Journal 
has 1.583 citation per paper and its impact factor is continuously increasing. The Journal has been 
indexed by many National and International agencies as Copernicus, Indian Citation index(ICI), cite 
factor Google scholars, CNKI scholar, EBSCO Discover etc. The Journal is in approved list of 
UGC for research advancement. AJMI  discourages any type of plagiarism in the paper and motivate 
the authors to have self plagiarism not exceed 20% while sending the paper, if at any time it is found we 
remove such paper from our website. 
 Ayrabhatta Journal of  Mathematics & Informatics mainly covers area of mathematical and 
statistical sciences, Operational Research, data based management, economical issues and 
information sciences. Mathematics being an interdisciplinary approach, is the core of computer 
simulation, physical sciences, quantitative analysis of management and economic issues, above all it is 
a key of key technologies of our times while information sciences the fastest growing segment due to 
industrial liberation, changes business environment, globalization and the trends in world economic 
scenario has posed an increasing challenges for the organization to be competitive and productive. The 
statistics reveal that today no organization or individual is without communicating or information device. 
Information Technology is becoming the dominant force in our culture and will continue to transform the 
key and the world we live and work. Information is an asset which is currently as important as capital or 
work. The Journal aims to focus on all such issues in mathematical, technical and business domain 
using the available set of knowledge. 
 We are of the opinion, it is good that life should be on going search, the journey is more important 
than the destination. 

DR. T.P. SINGH

Dr. T.P. Singh
Professor in Maths & O.R.

Chief Editor

The Journal :
           10 Years of Journey
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ABSTRACT : 

Let G = (V, E) be a simple connected graph.  An ordered subset W of V is said to be a resolving set of G if every 

vertex is uniquely determined by its vector of distances to the vertices in W. The minimum cardinality of a 

resolving set is called the resolving number of G and is denoted by r(G).  In this paper, we introduce the edge 

cycle graph G(Ck) of a graph G and find the exact value of the resolving number for some edge cycle graphs. We 

also find lower and upper bounds and characterize the extremal graphs. 

AMS Subject Classification:  Primary 05C12, Secondary 05C35. 

Keywords:  resolving number, edge cycle graph. 

 

1.  INTRODUCTION 

 Let G = (V, E) be a finite, simple, connected and undirected graph. The degree of a vertex  v  in a graph  G  is 

the number of edges incident with  v and it is denoted by d(v).  The maximum degree in a graph G is denoted by 

∆(G)  and the minimum degree is denoted by  δ(G).  If  δ(G) = ∆(G), then the vertices of G have the same degree 

and G is called  regular.  If  deg(v) = r for every v of  G,  where  1 ≤ r ≤ n − 1,  then  G  is  r-regular or regular of 

degree r. The distance d(u, v) between two vertices  u and  v in G is the length of a shortest u-v path in G. The 

maximum value of distance between vertices of  G is called its diameter. 

         A graph H is called a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let Pn  denote any  path  on 

n vertices,  Cn  denote any  cycle on n vertices and Kn denote any complete graph on  n  vertices.  For a cut vertex v 

of a connected graph G, suppose that the disconnected graph G\{v} has k components G1, G2, . . . , Gk (k ≥ 2). The 

induced sub-graphs Bi = G[V(Gi) ∪ {v}] are connected and referred to as the brances of G at v. The complement G
c
 

of a graph G is that graph whose vertex set is V(G) and such that for each pair u, v of vertices of G, uv is an edge of 

G
c
 if and only if uv is not an edge of G. The join G + H consists of G ∪ H and all edges joining a vertex of G and a 

vertex of H. For an integer s ≥ 2, sK2 + K1 is called the friendship graph and is denoted by Fs. A clique in a graph G 

is a complete sub-graph of G. The order of the largest clique in a graph G is its clique number and is denoted by 

ω(G). A proper vertex coloring of a graph G is an assignment of colors to the vertices of G, one color to each 

vertex, so that adjacent vertices are colored differently. A graph G is k-colorable if there exists a coloring of G from 

a set of k colors. The minimum positive integer k for which G is k-colorable is the chromatic number of G and is 

denoted by χ(G). 
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2.  RESOLVING NUMBER OF A GRAPH 

 If W = {w1, w2, ... , wk} ⊆ V (G) is an ordered set, then the ordered k-tuple (d(v, w1), d(v, w2), ..., d(v, wk)) is 

called the representation of v with respect to W and it is denoted by r(v| W).  Since the representation for each wi ∈ 

W contains exactly one 0 in the i
th
 position, all the vertices of W have distinct representations. W is called a 

resolving set for G if all the vertices of V \ W also have distinct representations.  The minimum cardinality of a 

resolving set is called the resolving number of G and it is denoted by r(G). 

 In 1975, Slater [10] introduced these ideas and used locating set for what we have called resolving set. He 

referred to the cardinality of a minimum resolving set in G as its location number. In 1976, Harary and Melter [4] 

discovered these concepts independently as well but used the term metric dimension rather than location number. In 

2003, Ping Zhang and Varaporn  Saenpholphat [8, 9] studied connected resolving number and in 2015, we  introduced 

and studied total resolving number. In this paper, we use the term resolving number to maintain uniformity in the 

current literature. 

We use the following results to prove new results in the subsequent sections. 

Theorem 2.1. [2] A connected graph G of order n ≥ 2 has resolving number 1 if and only if G ∼= Pn. 

Theorem 2.2. [2]  A connected graph of order  n ≥ 2  has resolving number n − 1  if and only if  G ∼= Kn. 

Observation 2.3.  Let G be a graph of order n ≥ 2. Then 1 ≤ r(G) ≤ n−1.  

Theorem 2.4. [6]   Let G be a graph with resolving number 2 and  let  {w1, w2} ⊆ V(G)  be a resolving set in G. 

Then the following are true: 

(a) There is a unique shortest path P between w1 and w2. 

(b) The degrees of w1 and w2 are at most 3. 

(c) Every other vertex on P has degree at most 5. 

Proposition 2.5. [5]   Let v be a cut vertex in a graph G. Then each resolving set for G is disjoint from at most one 

component of G \ {v}.  Moreover, if  W is a resolving set for G which is not disjoint from at least two components of  

G \ {v},  then  W \ {v} is a resolving set for G. 

Definition 2.6. A block of G containing exactly one cut vertex of G is called an   end block of G. 

Lemma 2.7. Let G be a 1-connected graph with δ(G) ≥ 2. Then every resolving set contains at least one non cut 

vertex of each end block. 

Proof. Let B1, B2,  . . . , Bb be the end blocks of G and vi be the cut vertex of Bi in G. Let W be a resolving set of G. 

Then we claim that |W ∩ (V(Bi) \ {vi})| ≥ 1   for   all   1 ≤ i ≤ b.  Suppose   W ∩ (V(Bi) \ {vi}) = ∅ for some i. 

Without loss of generality, let W ∩ (V(B1) \ {v1}) = ∅ in G. Since δ(G) ≥ 2, there exist two distinct vertices x1, x2 ∈ 

V (B1)  such that x1 and x2 are adjacent to v1.  Then d(x1, w) = d(x1, v) + d(v, w) = 1 +  d(v, w)  =  d(x2, v) + d(v, w) 

=  d(x2, w) for all w ∈ W, which is a contradiction. Therefore W ∪ (V(Bi) \ {vi}) ≠ ∅ for all 1 ≤ i ≤ b. 

Corollary 2.8.  If G contains b  end blocks, then r(G) ≥ b.     

         In this paper, we introduce edge cycle graph of a graph and investigate the resolving number of such graphs. 
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3.  EDGE CYCLE GRAPHS 

 In this section, we define edge cycle graph of a graph G and give some properties of  G(Ck). 

Definition 3.1. An edge cycle graph of a graph G is the graph G(Ck) formed from one copy of  G  and |E(G)| copies 

of  Pk, where the ends of the ith edge are identified with the ends of ith copy of Pk. A graph G and its edge cycle 

graph G(Ck) are shown in Fig 3.1. 

 

 

 

Fig 3.1 A graph G and its edge cycle graph 

 

Some Properties of G(Ck). 

1. If G is a graph of order n and size m, then |V(G(Ck))| = n + m(k − 2)  and  |E(G(Ck))| = mk. 

2. The degree of each vertex of V(G)  in  G(Ck)  is twice the degree of the vertex  in  G. 

3. ∆(G(Ck)) = 2∆(G), since maximum degree in G corresponds to maximum degree in  G(Ck). 

4. δ(G(Ck))  =  2,  since  minimum  degree  corresponds  to  new  vertices in G(Ck). 

5. G(Ck)  is connected if and only if  G  is connected. 

6. G(Ck)  is Eulerian, since every vertex of  G(Ck)  has even degree. 

 

     Diam(G) + 2��
�� − 1    if k is odd 

7. Diam(G(Ck)) =             Diam(G) + k – 2        if k is even. 

 

8. If G is r-regular graph, then G(Ck) is (2r, 2)-bi-regular graph. 

9. If G is a graph of order at least three, then the complement of G(Ck) is connected. 

10. The clique number of G and G(Ck)  are equal. 

11. If k is even, then G is bipartite if and only if G(Ck)  is bipartite.  If k is odd, then G(Ck)  is not bipartite. 

12. If G is bipartite and k is even, then χ(G(Ck)) = χ(G) = 2. If G is bipartite and k is odd, then χ(G(Ck)) = χ(G) + 1 

= 3. If G is not bipartite, then χ(G(Ck)) = χ(G). 

13. For any graph G, v  is a cut vertex of  G  if and only if  v  is a cut vertex in G(Ck). 

A minimum resolving set of G(C3) with distinct representation is illustrated in Fig 3.2. 
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Fig 3.2  Minimum resolving set of G(C3) 

4.  THE GRAPHS G(C3) 

 By Property 1, |V(G(C3))| = n + m and |E(G(C3))| = 3m. In this section, we determine the exact values when G 

is a cycle or tree. By Observation 2.3, r(G(C3))  ≤  n + m − 1. But we reduce the upper bound and characterize the 

extremal graphs. 

 

Observation 4.1.  For  n = 3, r (Cn(C3)) = 2.   

                                                              

Theorem 4.2.  For  n ≥ 4, r (Cn(C3))       =    2   if n is even 

 

                                                                   3  if n is odd. 

 

Proof. Let V(Cn) = {v1, v2, . . . , vn},  E(Cn) =  {v1v2, v2v3, . . . , vnv1}  and u1, u2, . . . , un be the new vertices in 

Cn(C3)  corresponding to the edges  v1v2, v2v3, . . . , vnv1.  Then  V(Cn(C3)) = V ∪ U,  where  V  = V(Cn), U ={u1, 

u2, . . . , un} and  E(Cn(C3)) = E(Cn) ∪ {uivi, uivi+1 / 1 ≤ i ≤ n − 1} ∪ {unvn, unv1}.  We consider the following two 

cases. 

Case 1:  n  is even. 

         By Theorem 2.1, r(Cn(C3)) ≥ 2. Next, we claim that r(Cn(C3))  ≤   2. Let W = {u1,u�
�
}. Let x, y be two distinct 

vertices of V(Cn(C3)) \ W. If d(x, u1) ≠ d(y, u1), then r(x|W) ≠  r(y|W).  So we may assume that d(x, u1) = d(y, u1).  

Let X = {vi / 2 ≤ i ≤ 
�
�} ∪ {uj  / 2 ≤ j ≤ 

�
� − 1}. If   xy ∈ E(Cn(C3)),  then   x ∈ U   and   y ∈ V or  x, y ∈ V.  If x ∈ 

U and y ∈ V, then d(x, u�
�
) = d(y, u�

�
) + 1.  It follows that r(x|W) ≠ r(y|W). If  x, y  ∈ V,  then x = v�

�
 + 1 and              

y = v�
�

 +2  or x = v� and y = v�. If x =  v�
�

 + 1 and y = v�
�

 + 2, then d(x, u�
�
) = 1 and d(y, u�

�
) = 2. If x = v� and y = 

v�, then y lies on x- u�
�
  path.  It follows that r(x|W) ≠ r(y|W). If xy ∈/ E(Cn(C3)),  then clearly,  x ∈ X  or  y ∈ X  

but not both. Without loss of generality, let x ∈ X. Since d(u1, u�
�
 ) = 

�
� , d(x, u�

�
) < d(y, u�

�
).  It follows that r(x|W) ≠ 

r(y|W). Therefore W is a resolving set of Cn(C3) and hence r(Cn(C3)) ≤  2. Thus r(Cn(C3)) = 2. 
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Case 2:  n  is odd. 

        First we claim that r(Cn(C3)) ≥ 3. Suppose that r(Cn(C3)) = 2. Let W = {w� ,w�} be a resolving set 

of Cn(C3). By Theorem 2.4, d(w� ) ≤ 3 and d(w�) ≤ 3. It follows that w� , w� ∈ U. Since diam(Cn(C3)) = 

��
�� + 1, d(w�, w�) = r ≤ ��

�� + 1. If d(w�, w�) ≤ ��
��, then without loss of generality, let w� = u� and 

w� ∊  �u�,   u� ,…,u��
�� �.  But d(un, w1) = d(vn, w�) = 2 and d(un, w�) = d(vn, w�) = r + 1. It follows that 

r(un|W) = r(vn|W) = (2, r + 1), which is a contradiction. If d(w�, w�) ≤ ��
�� + 1, then without loss of 

generality, let  w� = u� and w�= u��
��. But  d(u2, w�,) = d(vn, w�,) =  2 and d(u2, w�) = d(vn , w�) = r − 1. 

It follows that r(u2|W) = r(vn|W) = (2, r − 1), which is a contradiction. Thus r(Cn(C3)) ≥ 3. Next, we 

claim that r(Cn(C3)) ≤ 3. If n = 5, then we can easily verify r(C5(C3)) ≤ 3. So we may assume that n ≥ 7. 

Let W = �u� ,  u��
��, u��� �. If either d(x, u� ) ≠ d(y, u� ) or d(x,  u��

��) ≠ d(y,  u��
��),  then r(x|W) ≠ r(y|W).  

So we may assume that d(x, u� ) = d(y, u� )  and d(x,  u��
��) = d(y,  u��

��). Then x = u��
��� � and y = v��

��� � or 

x = un and  y = vn. But d(x, un−2) = d(y, un−2) + 1. It follows that r(x|W) ≠ r(y|W). Therefore W is a 

resolving set of Cn(C3)  and hence r(Cn(C3)) ≤ 3. Thus r(Cn(C3)) = 3. 

Theorem 4.3. Let T be a tree of order n ≥ 3 and p denote the number of pendant vertices of T. Then r(T (C3)) = p. 

Proof. Let V(T ) = {v1, v2,  . . . , vn} where v1, v2, . . . , vp are the pendant vertices of T. Let E(T ) = {e1, e2, . . . , en−1} 

where e1, e2, . . . , ep are the pendant edges of T. Let Ci be the edge cycle of ei. Let vij be the new vertex corresponds 

to the edge vivj in T(C3). Let W  =  {v1, v2, . . . , vp}.  We  claim that  W is  a  resolving  set  of  T(C3).  Let x, y  be 

two  distinct  vertices  of V(T (C3)) \ W. We consider the following three cases. 

Case 1:  x, y ∈ V(Ci) for some 1 ≤ i ≤ p.        

         Without  loss of generality, let x, y ∈ V(C1). Then x or y is a cut vertex of  T(C3). Without loss of generality, 

let x be a cut vertex.  Then  d(y, vi) = d(x, vi) + 1 for all 2 ≤ i ≤ p. It follows that r(x|W ) ≠ r(y|W ). 

Case 2:   x ∈ V(Ci), y ∈ V(Cj )  for some  1 ≤ i ≤ p and  1 ≤ j ≤ n − 1, i   ≠ j.  

        Without loss of  generality,  let   x  ∈  V(C1)   and   y  ∈/  V(C1).   Since d(x, v1) = 1, d(y, v1) > 1. It follows that 

r(x|W ) ≠ r(y|W ). 

Case 3:   x, y ∈/ V (Ci) for all 1 ≤ i ≤ p. 

         Then we consider the following two subcases. 

Subcase 1: x, y ∈ V(Ci) for some p + 1 ≤ i ≤ n − 1. 

         Then  x or y is a cut vertex. If x is a cut vertex in T(C3), then x lies on the path between y and a vertex vi of W 

for some 1 ≤ i ≤ p. Let v1 be such a vertex. Then d(x, v1) <   d(y, v1). It follows that r(x|W )  ≠  r(y|W).  

Subcase 2: x ∈ V (Ci),   y ∈ V (Cj ) for some p + 1  ≤   i,    j  ≤  n − 1,  i   ≠  j.  

         If x or y is a cut vertex, say x, then x lies on the path between y and a vertex vi of W for some 1 ≤ i ≤ p.  Let v1 

be such a vertex. Then clearly, d(x, v1) < d(y, v1). If x and y are non cut vertices in T(C3),  then there exist two 

distinct cut vertices x1 and x2  such that  x1  is adjacent to  x  and  x2  is adjacent to y.  Clearly,  x1  lies on the path 

between  x  and a vertex   vi  of  W  for some  1 ≤ i ≤ p,  say  v1  and simultaneously  x1  lies on the path between y 

and v1. Therefore d(x, v1) = d(x, x1) + d(x1, v1) = 1 + d(x1, v1) < d(y, x1) + d(x1, v1) = d(y, v1).  It follows that r(x|W)  

≠ r(y|W).  Thus W is a resolving set of T(C3) and hence r(T(C3)) ≤ p. Since T(C3) contains p end blocks, by 

Corollary 2.8,   r(T (C3)) ≥ p. Hence r(T(C3)) = p. 
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Theorem 4.4.  Let  G  be a graph of order  n ≥ 3. Then 2 ≤ r(G(C3)) ≤ n −1.  

Proof. Let V (G) = {v1, v2, . . . , vn}. Let vij be the new vertex in G(C3) corresponding to the edge  vivj .  If  G ∼=  Pn,  

then by Theorem 4.3,  r(Pn(C3)) = 2. If G ∼= Cn, then by Observation 4.1 and Theorem 4.2 ,  r(Cn(C3)) ≤ 3.  Now we 

assume that ∆(G) ≥ 3. Let d(vn) = r, r ≥ 3. Let W = {v�, v�., . . . , v���}. For 1 ≤ i, j ≤ n − 1,  ith  and  jth coordinates 

of the representation of vij  are 1 and that of any other vertex is not 1. The first r coordinates of the representation of 

vn are 1 and that of any other vertex are not 1. For  1 ≤ i ≤  r, only  ith coordinate of the representation of  vin   is  1  

and that of any other vertex is not 1. Thus each vertex of V(G(C3)) \ W have distinct representations and hence W is 

a resolving set of G(C3). Thus r(G(C3)) ≤ n − 1. By Theorem 2.1,  r(G(C3)) ≥ 2.  

 Theorem 4.5.  Let  G  be a  1-connected graph of order  n ≥ 3.   Then r(G(C3)) = 2  if and only if  G ∼= Pn.  

Proof. Let  r(G(C3)) = 2  and  W  = {w1, w2}  be a resolving set of  G(C3). We claim that degree of each cut vertex 

of G is two in G.  Suppose not.  Let v be a cut vertex and d(v) ≥ 3  in  G.  By Property 2, d(v) ≥ 6  in  G(C3). By 

Theorem 2.4, v does not lie on P and there exists a unique shortest path P between w1 and w2. By Property 13, v is 

also a cut vertex in G(C3).  Then there exist at least two branches at v in G(C3),  say  B1  and  B2.  By the above 

property of the path P, it lies in either B1 or B2, say B1 and hence W ∩ V(B2) = ∅, which is a contradiction to 

Lemma 2.7.  Thus degree of each cut vertex of G is two and hence G is a path. The proof of the converse part 

follows from Theorem 4.3. 

Notation 4.6. The graph obtained by identifying the centre vertex of Fs and the centre vertex of K1, t  is denoted by 

Fs ∗ K1, t. Clearly it is a 1-connected graph of order 2s + t + 1. 

Theorem 4.7.  Let G be a 1-connected graph of order n ≥ 3.  Then r(G(C3)) = n − 1  if and only if  G ∼= K1,n−1   or  

Fs, s ≥ 2  or  Fs ∗  K1,t,   s, t ≥ 1. 

Proof. Let V(G) = {v1, v2,  . . . , vn} and v1 be a cut vertex in G. Let vij be the new vertex in G(C3) corresponding to 

the edge vivj.  

         Assume that r(G(C3)) = n − 1. Let C1, C2,   . . . , Cr, r ≥ 2 be the components of G \ {v1}. Then there are r 

branches at v. Let B1, B2,  . . . , Br  be such branches.  Then we claim that each  Bi  is either  C3  or  K2  for all  1 ≤ i 

≤ r. Suppose Bi is neither C3 nor K2  for some  1 ≤ i ≤ r.  Let B1 be such a branch.  Let v2 ∈ V(B1) be adjacent to v1 in 

G.  Let W = V(G) \ {v1, v2}.   

          Let x, y be two distinct vertices of V(G(C3)) \ W.  If x = v1, y = v2, then d(y, v) = d(y, x) + d(x, v) = 1+ d(x, v) 

> d(x, v) for all v ∈V(G(C3)) \ V(B1(C3)) in G(C3). It follows that r(x|W) ≠ r(y|W). If x = v1, y ≠ v2, then y ∈ 

V(B1(C3))  or  y ∈ V (G(C3)) \ V(B1(C3)). If y ∈ V(B1(C3)), then d(x, v) =1 for some v ∈ W ∩ V(B2(C3)) and d(y, v) 

>1  for all  v ∈ V(B2(C3))  in  G(C3).  It follows that r(x|W) ≠ r(y|W). If y ∈ V(G(C3)) \ V(B1(C3)), then d(y, v3) = 

d(y, x) + d(x, v3) < d(x, v3), v3 ∈ V(B1) \ {v1, v2} in G(C3). It follows that r(x|W )  ≠  r(y|W ). If x ≠ v1 and y ≠ v2, 

then  x, y ∈ {vij / 1 ≤ i, j ≤ n, i ≠ j}. If i, j ∈ {3, 4,  . . . , n}, then clearly r(x|W) ≠ r(y|W). So we may assume that x = 

v1i and y = v2j.  If   i ≠ j, then clearly,  r(x|W)  ≠ r(y|W).  If  i = j, then without loss of generality, let i = j = 3. Since 

d(x, v3) = d(y, v3) = 1,  d(y, v) = (y, v1) + d(v1, v) = 2 + d(v1, v) > 1 + d(v1, v) = d(x, v1) + d(v1, v) = d(x, v) for all          

v ∈ V (G(C3)) \ V (B1(C3)).  It follows that r(x|W) ≠ r(y|W). Thus r(G(C3)) ≤ n − 2,  which is a contradiction. Thus 

each branch at v is either C3 or K2  in G and hence G ∼= K1,n−1 or  Fs, s ≥ 2  or  Fs ∗  K1,t,   s, t ≥ 1. 

         Conversely, let   G  ∼=  K1,n−1    or   Fs, s  ≥  2   or   Fs ∗  K1,t,   s, t ≥ 1. If G  ∼=  K1,n−1,  then  by  Theorems  4.3  and  

4.4,  r(G(C3))  =  n − 1.  In view of Theorem 4.4, it is enough, if we prove that n − 1 is the lower bound for Fs(C3),   s 

≥ 2 and (Fs ∗ K1,t)(C3),  s, t ≥ 1. First we consider Fs(C3),  s ≥ 2.  Let B1, B2,  . . . , Bs   be the blocks of  Fs(C3)  and let  

W  be its resolving set. By Lemma 2.7, |W ∩ (V(Bi) \{v1})| ≥ 1  for all  1 ≤ i ≤ s.  By Proposition 2.5, v1  ∈/  W.  Now 
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we claim that |W ∩ (V(Bi) \ {v1})|   ≥  2  for all 1 ≤ i ≤ s.  Suppose that    |W  ∩ (V(Bi) \ {v1})| ≤ 1   for  some              

1  ≤ i  ≤ s.  Let   |W ∩ (V(B1) \ {v1})| ≤ 1.  Since |W ∩ (V(B1) \ {v1})| ≥ 1,   |W ∩ (V(B1) \ {v1})| = 1.  Let                     

V(B1) = {v1, v2, v3, v12, v23, v13}. If v2 ∈ W, then r(v3|W) = r(v12|W). If v12 ∈ W, then r(v3|W) = r(v13|W). If v23 ∈ W,             

then r(v2|W) = r(v3|W). Thus  |W ∩ (V (Bi) \ {v1})| ≥ 2  for all  1 ≤ i ≤ s  and hence r(Fs(C3)) ≥ 2s  =  n − 1.   If                    

G  ∼=  Fs ∗  K1,t,   s, t ≥ 1,   then  we  can  similarly  prove  that r(G(C3)) ≥ n − 1. Hence r(G(C3)) = n − 1. 

 

5.  THE GRAPHS  G(C
k
),  k ≥ 4 

         In this section, we prove that a minimum resolving set of G(Ck) contains no vertex of V(G). 

Definition 5.1.  A set of edges in a graph is independent if no two edges in the set are adjacent. The edge independence 

number β1(G) of a graph G is the maximum cardinality taken over all maximal independent sets in G. 

Lemma 5.2. Let v be a vertex of degree r in G and e1, e2, . . . , er be edges incident with v and Ci be the edge cycle of 

ei, 1 ≤ i ≤ r. Then every resolving set of G(Ck) contains at least one vertex of degree 2 from Ci for all 1 ≤  i  ≤  r with at 

most one exception. 

Proof.  Let V(Ci) = {vi1, vi2,  . . . , vik}, 1 ≤ i ≤ r and vi1= v, vi1vik = ei. Let W be any resolving set of G(Ck) and Ai = 

{vi2, vi3,  . . . , vi(k−1)}. Then we claim that W ∩ V(Ai) ≠ ∅  for all  1 ≤ i ≤ r  with at most one exception. Suppose 

not. Then without loss of generality let W ∩ V(A1) = W ∩V (A2) = ∅. Then d(v12, u) = d(v12, v) + d(v, u) = 1 + d(v, u) 

= d(v22, v) + d(v, u) = d(v22, u) for all  u ∈ V(G(Ck))\ (A1 ∪ A2). Since W ⊂ V(G(Ck)) \ (A1 ∪A2),  d(v12, w) = d(v22, 

w) for all w ∈ W. Thus r(v12|W) = r(v22|W), which is a contradiction. Hence W ∩ V(Ai) ≠ ∅ for all 1 ≤ i ≤ r with at 

most one exception. 

Lemma 5.3. Let e be an edge of degree s and e1, e2,   . . . , es−2 be the edges adjacent to e in G. If any resolving set W 

of G(Ck) does not contain any internal vertex of the edge cycle of e, then W contains at least one internal vertex 

from each edge cycle of ei,  1 ≤ i ≤ s − 2. 

Proof. Let Ci be the edge cycle of ei and V(Ci) = {vi1, vi2, . . . , vik}, ei = vi1vik. Let V(Ai) = {vi2, vi3, . . . , vi(k−1)}. We 

claim that W ∩ V(Ai) ≠ ∅ for all 1 ≤ i ≤ s − 2. Suppose W ∩ V(Ai) = ∅ for some 1 ≤ i ≤ s − 2. Without loss of 

generality, let W ∩ V (A1) = ∅. Let C be the edge cycle of e. Then W does not contain any vertex of degree 2 from 

C1 and C, which is a contradiction to Lemma 5.2. Hence W ∩ V(Ai)  ≠ ∅ for all 1 ≤  i ≤       s − 2. 

Theorem 5.4. Let E1 = {e1, e2,  . . . , et} be a subset of edges of G  and  W be a resolving set of G(Ck). If W does not 

contain any internal vertex of edge cycle of ei for all  1 ≤ i ≤ t,  then  E1  is independent. 

Proof. The proof follows from Lemmas 5.2 and 5.3. 

Theorem 5.5. Let G be a graph of order n ≥ 5 and δ(G) ≥ 2. If W is a minimum resolving set of G(Ck), then W ∩ 

V(G) = ∅.  

Proof. Let V(G) = {v1, v2,  . . . , vn} and E(G) = {e1, e2, . . . , em}. Let Ci be the edge cycle of ei and V(Ci) = {vi1, vi2,  . . . , 

vik}, ei = vi1vik. Let V (Ai) = V(Ci) \ {vi1, vik}. Let W1 = W \ V(G). We claim that W1 is a resolving set of G(Ck). 

Let x and y be two distinct vertices of V(G(Ck)) \ W1.  We consider the following two cases. 

Case 1:  x, y ∈ V(Ci) for some i. Without loss of generality, let x, y ∈ V(C1).  Let e1 = v1v2 and v1 = v11, v2 = v1k. 

Since δ(G) ≥ 2, d(v1) ≥ 2 and d(v2) ≥ 2. Therefore two distinct edges e2 and e3  such that e2  is incident with v1  and 

e3  is incident with  v2.  We consider the following two sub-cases : 
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Subcase 1: W ∩ V(A1) = ∅. 

     By Lemma 5.3, W ∩V(A2) ≠ ∅  and  W ∩V(A3) ≠ ∅.  Let a ∈ W ∩V(A2) and b ∈ W ∩ V (A3).  If  d(x, a) ≠ d(y, 

a),  then  r(x|W1) ≠ r(y|W1). So we may assume that   d(x, a) = d(y, a). Then x or y  lies on  v�-v��!
��  path.  Without 

loss of generality,  let x lie on v�-v��!
�� path.  Therefore 

                            d(y, b) + 1 if x =  v��!
��, y =  v��!

���� and k is odd 

                            d(y, b)+ 2 otherwise. 

              

It follows that r(x|W1) ≠ r(y|W1).      

Subcase 2:  W ∩ V(A1) ≠ ∅. 

            Let a ∈ W ∩V(A1). If d(x, a) ≠ d(y, a), then  r(x|W1) ≠ r(y|W1). So we may assume that d(x, a) = d(y, a). If   

a = v��!
��,  then x or y lies on a-v�� path. Without  loss  of generality, let x lie on a-v�� path.  If  either  W ∩V(A2) ≠ 

∅   or W ∩V(A3) ≠∅, without loss of generality, let W ∩V(A2) ≠ ∅. Let b ∈ W ∩V(A2). Let v1 = v21, v2 = v31  and 

b = v��!
��. Then 

 

                   d(x, b) + 1   if k is odd 

d(y, b) =  

                   d(x, b)+ 2    if k is even. 

 

It follows that r(x|W1) ≠ r(y|W1). So we may assume that W ∩ V(A2) = ∅ or W ∩V(A3) =∅ and d(v1) = d(v2) = 2. 

By Theorem 5.4, e2 and e3 are independent edges in G. Since δ(G) ≥ 2, d(v2k) ≥ 2. Let e4 be incident with v2k. Let 

v2k = v41, v2k = v3 and v3k = v4. Since n ≥ 5, a vertex of V(G) \ {v1, v2, v3, v4} is adjacent to v3 or   v4. Without loss 

of generality,   let v5 be adjacent to v3.  Let  

e4 = v3v5. Since W ∩ V(A2) = ∅, by Lemma 5.3,  W ∩ V(A4) ≠ ∅.  Let v3 = v41   and   b =  v��!
��. Then  

    

   d(x, b) + 1   if k is odd  

d( y, b)   = 

   d(x, b)+ 2    if k is even. 

             

 

It follows that r(x|W1) ≠ r(y|W1). 

Case 2: x ∈ V(Ci) and y ∈ V(Cj ),  i ≠ j. 

 Without loss of generality,  let  x ∈V(C1), y ∈ V(C2).  If either W ∩V(A1) ≠ ∅   or W ∩V (A2) ≠ ∅, without loss 

of generality, let  W ∩V(A1) ≠ ∅.  Let a ∈ W ∩V(A1) and a = v��!
��.  If   d (x,  v��!

��) ≠ d(y, v��!
��), then r(x|W) ≠ 

r(y|W). So we may assume that d (x,  v��!
��) = d(y,  v��!

��). Clearly, e1 is incident with v11 or v1k, say v11 in  G.  Let    

v11 = v21.  Then k is even, x =  v1k   and  y  =  v22   or  y  =  v2k.  Assume that y = v22. If W ∩ V(A2)  ≠ ∅, then let v�!
�
 

∊ W ∩ V(A2). But d(x, v�!
�
) = d(y, v�!

�
)  + 2.  So we may assume that W ∩ V(A2) = ∅.  Since δ(G) ≥ 2, d(v1k) ≥ 2 

and   d(v2k) ≥ 2  in  G. Let  e3  be incident with v1k  and v31  =  v1k. If W ∩ V(A3) ≠ ∅,  then let  v%!
�
 ∈ W ∩ V(A3). 

But d(y, v%!
�
) = d(x) + 2. So we may assume that   W ∩ V(A3) = ∅.  Since δ(G)  ≥ 2, d(v3k) ≥ 2 in G.  Let e4 be 

     d(x, b) = 
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incident with v3k. Let  v41 =  v3k. If   v4k  =  v11, then d(y, v&!
�
) = d(x, v&!

�
) + 1.  If v4k  ≠ v11, then  d(y, v4!

�
) = d(x, 

v4!
�
) + 2. If y = v2k, then we can similarly prove that r(x|W)  ≠  r(y|W).  

 So we may assume that W ∩ V(A1) = ∅ and W ∩ V(A2) = ∅.  By Lemma 5.3, e1  and  e2  are  independent  

edges  in  G.  Let e1 =  v1v2, e2  =  v3v4. Since d(v1) ≥ 2, d(v2) ≥ 2,  d(v3)  ≥ 2  and  d(v4)  ≥ 2,  let  e3  be  incident 

with   v1,   e4   be incident with   v2,   e5   be incident with   v3   and e6 be incident with v4. . Since W ∩ V(A1) = ∅, 

W ∩ V(A2) = ∅ and by Lemma 5.3,  W ∩ V(A3) ≠ ∅,  W ∩ V(A4) ≠ ∅,  W ∩ V(A5) ≠∅ and  W ∩ V(A6) ≠∅. Let a 

∈ W ∩V (A3),  b ∈ W ∩ V(A4),  c ∈ W ∩ V(A5) and d ∈ W ∩ V(A6). If  either   e3  ≠  e5   or   e4  ≠e6,  then  without  

loss  of  generality,  let e3  ≠  e5. Let X = {a, b, c}. Then  r(x|X) ≠ r(y|X).  It follows that  r(x|W) ≠ r(y|W). So  we  

may  assume  that e3  =  e5  and  e4  =  e6.  Since  n  ≥ 5, there  exists a vertex of  V(G) \ {v1, v2, v3, v4},  say  v5  

such that  v5   is adjacent to one  of  v1, v2, v3 and v4, say v1. Let v1v5 = em. Since W ∩ V(A1) = ∅,  by Lemma 5.3,  

W ∩ V(Am) ≠ ∅.  Let e ∈ W ∩ V (Am).  Let  Y  = {a, b, e}. Then r(x|Y) ≠ r(y|Y).  It follows that r(x|W) ≠ r(y|W). 

Thus   W1   is a resolving set of   G(Ck). 

 

Theorem 5.6. Let G be a graph of order n ≥ 5 and δ(G) = 1. If W is a minimum resolving set of G(Ck), then W ∩ V 

(G) = ∅.  

Proof.  Let V(G) = {v1, v2, . . . , vn} where v1, v2, . . . , vp are the pendant vertices and E(G) = {e1, e2, . . . , em} 

where e1, e2, . . . , ep are the pendant edges.  Let  Ci  be the  edge  cycle  of  ei   and  V(Ci)  =  {vi1, vi2, . . . , vik},              

ei = vi1vik. Let V(Ai) = V(Ci) \ {vi1, vik}. Let W1 = W \ V(G). We claim that W1 is a resolving set of G(Ck).  Let x 

and y be two distinct vertices of V(G(Ck)) \ W1. We consider the following three cases. 

Case 1: x, y ∈ V(Ci) for some 1 ≤ i ≤ p. 

     Without loss of generality,  let  x, y  ∈ V (C1).  Let   e1 =   v11v1k and d(v1k)  =  1  in  G.  By  Lemma  2.7,                  

W ∩ V (A1)  ≠ ∅.  Let  a ∈ W   ∩ V (A1) and  a = v��!
�� If  d (x, a)  ≠  d(y, a),  then  r(x|W1) ≠ r(y|W1).  So we   may 

assume that d(x, a) = d(y, a). Let  x lie on v11- v��!
��  path.  Then  y  lies on  v��!

�� - v1k path. Clearly,                                    

d(x, w)  <  d(y, w) for all w ∈ W1 \ {a}. It follows that r(x|W1) ≠ r(y|W1). 

Case 2:  x ∈ V(Ci)  and  y ∈ V(Cj )  for some  1 ≤ i ≤ p, 1 ≤ j ≤ m and i  ≠ j.    

     Without loss of generality, let x ∈ V(C1)  and  y ∈/ V(C1).  By Lemma 2.7, W ∩ V(A1) ≠  ∅. Let a ∈ W ∩ V(A1).  

Let  d(v1k) = 1 in G. Let a = v��!
�� . If d(x, a) ≠ d(y, a), then r(x|W1) ≠ r(y|W1). So we may assume that                                

d(x, a) = d(y, a). Then clearly, k is even, x = v1k  and  y  is the neighbor of V(G(Ck)) \ {v11}.  Since  d(x, v) = d(y, v)  

for all  v ∈ V(G)  and  W is a minimum resolving set,  d(x, w) ≠ d(y, w)  for  some  w ∈ W1 \ {a}. It follows that                           

r(x|W1) ≠ r(y|W1). 

 

Case 3 :   x, y ∈/ V(Ci)  for all  1 ≤ i ≤ p. 

         The proof is similar to proof of Theorem 5.5. 

 

BOUNDS AND EXTREMAL GRAPHS 

         In this section, we obtain lower and upper bounds for resolving number of G(Ck), when k ≥ 4 and characterize 

the extremal graphs. 

 

Definition 6.1.  Vertices which are adjacent to pendant vertices are called support vertices. Let p denote the number 

of pendant vertices of G and s denote the number of support vertices of G. 
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2

Theorem 6.2.  Let G be a graph of order n ≥ 3 and size m. If δ(G) = 1 and k is even, then r(G(Ck)) ≤ m + p − s. 

Proof. Let V(G) = {v1, v2 ,..., vn} where v1, v2, . . . , vs are the support vertices of G and vs+1, vs+2, . . . , vs+p are 

the pendant vertices of G. Let E(G) = {e1, e2, . . . , em} where  e1, e2, . . . , ep  are the pendant edges. Let vs+1, 

vs+2, . . . , v2s be the pendant vertices corresponding to the support vertices v1, v2, . . . , vs respectively. For             

1 ≤ i ≤ s, let ei = vivs+i. Let Ci be the edge cycle of ei and V(Ci) = {vi1, vi2, . . . , vik}, 1 ≤ i ≤ m. For s + 1 ≤ i ≤  p, 

let vi = vik. Let W = {v(!
�
 / 1 ≤ i ≤ m} ∪ {v((*!

�+� �)/ s + 1 ≤ i ≤ p}.Then we claim that W is a resolving set of 

G(Ck). Let x, y be two distinct vertices of V(G(Ck)) \ W. We consider the following three cases.  

Case 1 : x, y ∈ V(Ci) for some 1 ≤ i ≤ p. 

          If x, y ∈ V(Ci) for some s + 1 ≤ i ≤ p, then without  loss  of  generality, let x, y ∈ V (Cp). Let ep = vp1vpk, 

where d(vpk) = 1 in G. Let Y= {v,!,
�

, v,(*!
�+� �)}Then r(x|Y) ≠ r(y|Y). It follows that r(x|W) ≠ r(y|W ). So we 

may assume that  x, y  ∉ V (Ci)  for all  s + 1 ≤ i ≤ p.  Without loss of generality, let  x, y ∈ V (C1).  If  d(x, v�!
�
)  ≠ 

d(y, v�!
�
),  then  r(x|W) ≠ r(y|W). So we may assume that d(x, v�!

�
)  = d(y, v�!

�
),  Then x lies on v�!

�
-v11 path and y 

lies on v�!
�
-v1k.  Since e1 is a non pendant edge, there exists an edge ez of E(G) \ {e1} such that ez is incident with 

v11.  Therefore d(y, 

2

k
z

v ) = d(x, 

2

k
z

v  ) + 2. It follows that r(x|W) ≠ r(y|W). 

Case 2:   x ∈ V(Ci)  and  y ∈ V(Cj)  for some  1 ≤ i ≤ p, 1 ≤ j ≤ m and i ≠ j. 

          If x ∈ V(Ci) for some 1 ≤ i ≤ s, then without loss of generality, let x ∈ V(C1). If d(x, 

2

k
1

v ) ≠ d(y, 

2

k
1

v ), then 

r(x|W) ≠ r(y|W). So we may assume that d(x, 

2

k
1

v ) = d(y, 

2

k
1

v ). Then x = v1k and y is the neighbour of v11 in G(Ck) \ 

V (C1). Without loss of generality, let y ∈ V(Cm) and vm1 = v11. Then d(x, 

2

k
m

v ) = d(y, 

2

k
m

v ) + 2. It follows that 

r(x|W) ≠ r(y|W).  If x ∈ V(Ci) for some s + 1 ≤ i ≤ p, then without loss of generality, let x ∈ V (Cp). Let                    

Y = {

2

k
p

v  ,
)1

2

k
(p

v
+

}. Then r(x|Y) ≠ r(y|Y). It follows that  r(x|W)  ≠  r(y|W). 

Case  3 :   x, y ∉ V(Ci)  for all  1 ≤ i ≤ p. 

         Without loss of generality, let x ∈ V(Cm). Since em is a non pendant edge, there exist two edges  et, et′ of  

E(G)\{em}  such that  et  is incident with vm1 and et′  is incident with vmk.  Let vm1 = v11.  If d(x, 

2

k
m

v )  ≠  d(y, 

2

k
m

v ), 

then r(x|W) ≠ r(y|W). So we may assume that d(x, 

2

k
m

v ) = d(y, 

2

k
m

v ). If y ∈ V(Cm), then x lies on vmk-

2

k
m

v  path 

and y  lies on  vm1-

2

k
m

v  path.  If y ∉ V(Cm), then x = vmk   and y = vt2 or  y = vtk.  Let Y  = {

2

k
t

v , 

2

k
't

v }.  Then 

r(x|Y) ≠ r(y|Y). It follows that r(x|W) ≠ r(y|W). 

 Thus W is a resolving set of G(Ck). Hence r(G(Ck)) ≤ m + p − s. 

 

Theorem 6.3.  Let  G  be  a graph  of order  n ≥ 3,  size  m  and  δ(G) = 1. If k is even, then r(G(Ck)) = m + p − s if 

and only if each edge of G is incident with a support vertex of G. 

Proof. Let r(G(Ck)) = m + p − s. 

          Let V(G) = {v1, v2, . . . , vn} where v1, v2, . . . , vs are the support vertices of G and  vs+1, vs+2, . . . , vs+p  are the 

pendant vertices of  G.  Let  E(G)  =  {e1, e2, . . . , em}  where   e1, e2, . . . , ep   are  the  pendant  edges. Let vs+1, vs+2, 
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. . . , v2s be the pendant vertices corresponding to the support vertices v1, v2, . . . , vs respectively. For 1 ≤  i ≤ s, let ei 

= vivs+i. Let Ci be the edge cycle of ei and V(Ci) = {vi1, vi2, . . . , vik}, 1 ≤ i ≤ m. For 1 ≤ i ≤ p, let vi = vik. 

          Now, we claim that each edge of G is incident with a support vertex of G. Suppose not.  Then there exists an 

edge uv  such that  u  and  v  are not support vertices. Let uv = em. Let W = {

2

k
i

v  / 1 ≤ i ≤ m−1}∪{v((*!
�+� �) / s+1 ≤ 

i ≤ p}. Let x, y be two distinct vertices of V(G(Ck)) \ W. If x, y ∈ V(Ci) for some 1 ≤ i ≤ p,  then the proof is similar 

to Case  1 of Theorem 6.2.  If x ∈ V (Ci), y ∈ V(Cj) for some 1 ≤ i ≤ p, 1 ≤ j ≤ m and i ≠ j, then the proof is similar 

to Case 2  of Theorem 6.2.  So we may assume that x, y ∉ V(Ci) for all 1 ≤ i ≤ p.  

          If either x ∉ V(Cm)  or   y ∉ V(Cm), then without loss of generality, let x ∉ V(Cm).  Let  x ∈ V(C1).  Since  e1  

is a non pendant edge, there exist  two  distinct  edges   er, er′  of   E(G) \ {e1}  such  that   er   is  incident  with v1k   

and   er′   is  incident  with   v11.  Suppose   er  ≠    em   and   er′  ≠  em.  Let Y   = {

2

k
1

v  , 

2

k
r

v , 

2

k
'r

v }.  Then   r(x|Y) ≠ 

r(y|Y). It follows that r(x|W) ≠ r(y|W) .  Now, we assume that   er′  =  em.  Let   v1k = vrk, v11 = vm1.  Let Y = {

2

k
1

v  , 

2

k
2

v }. If   vmk   = vr1, then   r(x|Y) ≠ r(y|Y).  It follows that r(x|W) ≠ r(y|W). So we may assume that vmk ≠vr1. Since 

em is a non pendant edge, there exists an edge et of E(G) \ {e1, er, em} such that et is incident with v21. Let Y = {

2

k
1

v , 

2

k
2

v , 

2

k
t

v  }. Then r(x|Y) ≠ r(y|Y).  It follows that r(x|W) ≠ r(y|W). Now, we assume that x, y ∈ V (Cm). Since em is  

a  non  pendant  edge  and  vm1,vmk are non support vertices in G, let em−1 be incident with vm1 and em−2 be incident 

with vmk.  Let X = {

2

k
)1m(

v
−

 , 

2

k
)2m(

v
−

}.  Then r(x|Y) ≠ r(y|Y).  It follows that r(x|W) ≠ r(y|W). 

         Thus W is a resolving set with cardinality m + p − s − 1, which is a contradiction. Hence each edge of G is 

incident with a support vertex of G. 

         Conversely, let each edge of G be incident with a support vertex of G. By Theorem 6.2, r(G(Ck)) ≤ m + p − s. 

Next, we claim that r(G(Ck)) ≥ m + p − s. Suppose that r(G(Ck)) ≤ m + p − s − 1. By Theorem 2.7 and our 

assumption, there exist either two pendant edges e1, e2 are incident  with  a  support  vertex   v   in   G  such  that   

|W  ∩ (V(C1) \ {v})|  =  1 and |W ∩ (V (C2) \ {v})| = 1 in G(Ck) or a pendant edge e1 and a non pendant edge e2 are  

incident  with  a  support  vertex  v  in  G  such that |W ∩ (V(C1) \ {v})| = 1  and  |W ∩ (V(C2) \ {v})| = ∅  in  

G(Ck).  Thus two neighbors of v in V(C1) ∪ V(C2) have the same representation, which is a contradiction. Therefore 

r(G(Ck)) ≥ m + p − s. Hence r(G(Ck)) = m + p − s. 

 

Theorem 6.4. Let G be a graph of order n ≥ 3, size m and δ(G) ≥ 2. If k is even, then r(G(Ck)) ≤ m − 1. 

Proof.  Let  E(G)  =  {e1, e2, . . . , em}.  Let  Ci  be the edge cycle of  ei. Let V(Ci) = {vi1, vi2, . . . , vik}  and  vi1vik  = 

ei, 1  ≤ i  ≤ m. We claim that W = {

2

k
i

v / 1 ≤ i ≤ m − 1} is a resolving set of G(Ck). Let x, y be two distinct vertices 

of V(G(Ck)) \ W. 

 If  either  x ∉ V(Cm)   or   y ∉ V(Cm), then without loss of generality, let   x ∉  V(Cm).  Let   x ∈ V (C1).  Since   

δ(G)  ≥ 2,  there  exist  two  distinct edges   er, er′  of   E(G) \ {e1}  such  that   er   is  incident  with   v1k   and   er′     

is incident with  v11.  If  er ≠ em   and  er′  ≠ em,  then without loss of generality, let  er  = e2  and  er′   = e3.  Let                    

Y  = {

2

k
1

v  , 

2

k
2

v , 

2

k
3

v }.  Then r(x|Y) ≠ r(y|Y). It follows that r(x|W ) ≠ r(y|W ).  Now, we assume that  er′  = em.  
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Let  er = e2.  Let   v1k = v2k, v11 = vm1. Let Y = {

2

k
1

v , 

2

k
2

v }. If vmk = v21, then r(x|Y ) ≠ r(y|Y ). It follows that r(x|W) 

≠ r(y|W). So we may assume that vmk ≠v21. Since δ(G) ≥ 2, there exists an edge of E(G) \ {e1, e2, em}, say em−1 such 

that em−1 is incident with v21. Let Y = {

2

k
1

v , 

2

k
2

v  , 

2

k
)1m(

v
−

}. Then r(x|Y ) ≠ r(y|Y ). It follows that r(x|W) ≠ r(y|W). 

Now, we assume that x, y ∈ V(Cm). Since δ(G) ≥ 2, let e1 be incident with vm1 and e2 be incident with vmk.               

Let Y = {

2

k
1

v , 

2

k
2

v }. Then r(x|Y) ≠ r(y|Y). It follows that r(x|W) ≠ r(y|W). Thus W is a resolving set of G(Ck) and 

hence r(G(Ck)) ≤ m − 1. 

 

Theorem 6.5.  Let G be a graph of order n ≥ 3, size m and δ(G) ≥ 2. If k  is even, then  r(G(Ck)) = m − 1  if and 

only if  G ≅ C3  or  C4. 

Proof.  Let E(G)  =  {e1, e2, . . . , em}.  Let Ci be the edge cycle of  ei.  Let V(Ci) = {vi1, vi2,  . . . , vik} and                 

vi1vik = ei, 1 ≤ i ≤ m. Assume that r(G(Ck))  =  m − 1.  Then we  claim  that   G ≅ C3  or   C4.  Suppose G is neither 

C3 nor C4.  Let em and em−1 be two non adjacent edges in  G. Let W ={

2

k
i

v / 1 ≤ i ≤ m − 2} be a subset of V(G(Ck)) 

with cardinality m − 2. Let x, y be two distinct vertices of V (Ck) \ W. We consider the following three cases. 

Case 1: x, y ∈ V(Ci) for some 1 ≤ i ≤ m − 2. 

         Without loss of generality, let x, y ∈ V(C1). If d(x, 

2

k
1

v  )  ≠   d(y, 

2

k
1

v ),  then r(x|W) ≠ r(y|W). So we may 

assume that d(x, 

2

k
1

v ) = d(y, 

2

k
1

v  ). Then x lies on v11-

2

k
1

v  path and y lies on 

2

k
1

v -v1k path. If ei is incident with v11 

for some 2 ≤ i ≤ m−2, then without loss of generality, let e2 be incident with v11. Clearly, d(y, 

2

k
2

v ) = d(x, 

2

k
2

v ) +2. 

It follows that r(x|W) ≠ r(y|W). So we may assume that ei  is not incident with v11 for all 2 ≤ i ≤ m−2. Since                  

δ(G) ≥ 2, em  or  em−1,  say  em  is incident with  v11.  Let  vm1 = v11. Since d(vmk) = 2  in  G, let  e2 be incident with  

vmk. Then  d(x, 

2

k
2

v ) < d(y, 

2

k
2

v ). It follows that r(x|W) ≠ r(y|W). 

Case 2:  x ∈ V (Ci) for some 1 ≤ i ≤ m − 2 and y ∈ V (Cm).  

         Without loss of generality, let x ∈ V (C1). Since δ(G) ≥ 2, there exist two edges  et, et′   of  E(G) \ {em}  such 

that  et   is incident with  vm1  and  et′ is incident with  vmk.  Let vt′ = vm1 and vt′1  = vmk.  If e1 is neither incident with 

vm1 nor incident with  vmk, then  d(y, 

2

k
1

v ) > d(x, 

2

k
1

v ). It follows that r(x|W) ≠ r(y|W). Therefore e1 is incident with 

vm1 or vmk, say vm1. Let vm1 = v11.  Let   et′ = e2.  If   et  ≠ e1, then d(x, 

2

k
1

v  ) < d(y, 

2

k
1

v ). It follows that r(x|W) ≠ 

r(y|W). So we assume that e1 = et and d(vm1) = d(vmk) = 2 in G. Since G ≇ C4,  n ≥ 5.  Therefore  there  exist  two  

edges  er, er′   of E(G) \ {e1, em, et′ }  such that  er  is incident with  v1k  and  er′   is incident with v2k.  Thus either er ≠ 

em  or  er′  ≠ em. Without loss of generality, let er ≠ em and er = e3. Then d(x, 

2

k
3

v  ) < d(y, 

2

k
3

v ). It follows that                 

r(x|W ) ≠ r(y|W).  

Case 3:   x, y ∉ V (Ci) for all  1 ≤ i ≤ m − 2. 

         Assume that x, y ∈ V(Cm). Since δ(G) ≥ 2, let e1 be incident with vm1  and  e2  be incident with  vmk  in  G.  Let 

S = {

2

k
1

v  , 

2

k
2

v  }.  Then r(x|S) ≠ r(y|S). It follows that r(x|W) ≠ r(y|W). Now, assume that x ∈ V(Cm) and y ∈ 

V(Cm−1). Let em = v1v2 and em−1 = v2v3. Since δ(G) ≥ 2, let  e1  be incident with vm1  and  e2  be incident with  vmk in  
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G.  Let vm1 = v11 and vmk = v21.  Since  δ(G) ≥ 2,  there exist two edges  et, et′  of  E(G) \ {em, em−1} such  that   et   is  

incident  with   v(m−1)1  and   et′ is  incident  with   v(m−1)k.  If either   e1 ≠  et   or   e2  ≠  et′ ,  then  without  loss  of  

generality,  let  e1 ≠   et.  Let   et′ = e3 and   Y = {

2

k
1

v , 

2

k
2

v , 

2

k
3

v }.  Then   r(x|Y) ≠ r(y|Y). It follows that   r(x|W)      

≠  r(y|W).  So we may assume that   e1  =  et   and   e2  =  et′. If n = 4, then since G≇ C4, v1kv2k ∈ E(G(Ck)).  Let   

vm1v2k = e3. Then r(x|Y) ≠  r(y|Y).  It follows that r(x|W) ≠ r(y|W).  Now, we assume that n ≥ 5.  Let e1 = v1v2, e2 = 

v3v4.  Then there exists a vertex of V (G) \ {v1, v2, v3, v4}, say v5 such that v5 is adjacent to one of v1, v2, v3 and v4, 

say v1  in  G. Let  v1v5  = em−2.  Let v(m−2)1 =  v1  =  v11. Then d(x, 

2

k
)2m(

v
−

) < d(y, 

2

k
)2m(

v
−

). It follows that r (x|W) ≠ 

r(y|W ). 

         Thus W is a resolving set of G(Ck) with cardinality m − 2, which is a contradiction. Hence G ≅ C3  or  C4. 

         Conversely, let G ≅ C3  or  C4. By Theorem 6.4,   r(G(Ck))  ≤ m − 1. If  G ≅  C3,  then  by  Lemma  5.3,   

r(G(Ck))  ≥  2.  Next,  we  claim  that  if G ≅  C4,   then   r(G(Ck))  ≥  3. Suppose  that r(G(Ck))  ≤  2  and W  = {w1, 

w2} be a resolving set of  G(Ck).  Let V(Ai) = V (Ci) \ {vi1, vik}.  Let E(C4) = {e1, e2, e3, e4}, where  e1, e3 are non 

adjacent edges and  e2, e4 are non adjacent edges.  By Lemma 5.3, let W ∩ V(A1) = ∅, W∩ V(A2) ≠∅, W ∩ V(A3) = 

∅  and W ∩ V (A4) ≠ ∅.  Let v11 = v4k, v1k = v21, v2k  = v31 and v3k = v41.  If  either w1∉{v�!
�
, v�(!

���)} or w2 ∉{v&!
�
, 

v&(!
���)},  then  without  loss  of  generality,  let w1 ∉{v�!

�
, v�(!

���)}.  If w1 =  v�(!
� � �),  then  r(v2(k−1)|W) = r(v32|W), 

which is a contradiction. So we may assume that w1 ∈ {v�!
�
, v�(!

���)}  and w2 ∈ {v&!
�
, v&(!

���)}. If W = {v�!
�
, v&!

�
}, 

then  r(v2k|W) = r(v4k|W ) = (
2

k
, 

2

k
),  which is a contradiction. If W = {v&!

�
, v&(!

���)}, then r(v1(k−1)|W) = r(v2k|W) = 

(
2

k
, 

2

k
+ 1), which is a contradiction. Thus r(G(Ck)) ≥ m − 1 and hence r(G(Ck)) = m − 1. 

 

Lemma 6.6. Let G be a graph of order n ≥ 3, size m and δ(G) ≥ 2. Then r(G(Ck)) ≥ m – β1(G). 

Proof.  Let E(G) = {e1, e2, . . . , em} and β1(G) = s.  Let  Ci be the edge cycle  of  ei   and  W  be a  minimum  

resolving  set  of  G(Ck).  Let  V(Ci) = {vi1, vi2, . . . , vik} and V (Ai) = V(Ci) \ {vi1, vik}. We claim that r(G(Ck)) ≥ m 

− s. Suppose r(G(Ck)) ≤ m − (s + 1). Therefore W  does not contain any vertex from at least s + 1 sets of A1, A2, . . . 

, Am. Let A1, A2, . . . , As+1 be such sets. Then  W ∩ V(Ai)  =  ∅  for  all  1  ≤ i  ≤ s + 1.  By  Theorem  5.4,  e1, e2, . . 

. , es+1  are independent edges of   G,  which is a contradiction   to   β1(G)  =  s. By  Theorem 5.5,   W  ∩ V (G)  =  ∅   

and  hence   r(G(Ck)) ≥ m − β1(G). 

Theorem 6.7.  Let G be a graph of order n ≥ 5  and size  m.  If  k  is odd and δ(G) ≥ 2, then r(G(Ck)) = m − β1 (G). 

 Proof. Let V(G) = {v1, v2, . . . , vn}, E(G) = {e1, e2, . . . , em} and  Ci be the edge cycle of ei. Let β1(G) = s and                  

M = {e1, e2, . . . , es} be the maximum  edge  independent  set  of  G.  Let ei  =  vi1vik, 1  ≤ i ≤ m. Let W = {v(�!
�� / s + 

1 ≤ i ≤ m}. We claim that W is a resolving set of G(Ck). Let x, y be two distinct vertices of V(G(Ck)) \ W. We 

consider the following two cases. 

Case 1: x ∈ V(Ci) for some 1 ≤ i ≤ s. 

Without loss of generality, let x ∈ V(C1). Let e1 = v1v2. Since δ(G)  ≥ 2,   d(v1) ≥ 2  and  d(v2) ≥ 2.  Then there exist 

two distinct edges  er, er′ ∈ E(G) \ {e1}  such  that  er  is  incident  with   v1  and   er′  is  incident  with   v2. Since   e1 

∈ M, by Lemma 5.3,  er, er′ ∉  M. Without  loss  of  generality, let er = em and er′ = em−1. Let                                              
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Y = {v/�!
�� , v(/��)�!

�� }.  If   y ∈ V(C1), then r(x|Y) ≠ r(y|Y). It follows that r(x|W) ≠ r(y|W). So we assume that y 

∉ V(C1). If either d(x, v/�!
��  ) ≠ d(y, v/�!

��) or d(x,

 

v(/��)�!
��) ≠ d(y, v(/��)�!

�� ) , then r(x|W) ≠ r(y|W ). So we may 

assume that d(x, v/�!
�� ) = d(y,  v/�!

��  )  and  d(x, v(/��)�!
�� ) = d(y,  v( /��)�!

��  ) . Therefore  y ∉ V(Cm) and                       

y ∉V (Cm−1). 

If y ∈ V(Ci) for some s + 1 ≤ i ≤ m − 2, then without loss of generality, let y ∈ V(Cm−2). Clearly, d(x, v(/��)�!
��)  > 

d(y, v(/��)�!
��). It follows that r(x|W) ≠ r(y|W). So we may assume that y ∈ V(Ci) for some 2 ≤ i ≤ s. Without loss 

of generality, let y ∈ V(C2). Let e2 = v3v4. Since d(v3) ≥ 2  and  d(v4) ≥ 2, there exist two edges et, et′ of E(G) \ {e1, 

e2} such that et is incident  with v3 and et′ is incident with v4. If either er ≠ et or  er′ ≠ et′ , then  without  loss  of  

generality,  let er ≠ et. Let et = em−2  and Y = {v/�!
��,  v( /��)�!

�� , v(/��)�!
��}. Then r(x|Y) ≠ r(y|Y).  It follows that  

r(x|W) ≠ r(y|W).  So we may assume that er = et and er′ = et′. Since there exists a vertex  of   V (G) \ {v1, v2, v3, v4},  

say  v5  such  that v5  is  adjacent  to  one  of   v1, v2, v3  and   v4,  say   v1  in   G.  Since e1 ∈ M, by Lemma 5.3,  v1v5 

∉ M.  Let   v1v5 = em−2.  Let   v(m−2)1  =  v1  =  v11.  Let  Y  = �v/�!
��,  v( /��)�!

�� , v(/��)�!
���.  Then   r(x|Y) ≠ (y|Y).  It 

follows that r(x|W) ≠ r(y|W).  

Case 2:   x  ∉ V(Ci)  for all  1 ≤ i ≤ s.  

Without loss of generality, let x ∈ V(Cm). If y ∈ V(Ci) for some 1 ≤ i ≤ s,  then the proof is similar to Case 1.  So we 

assume that y ∉V(Ci) for all  1 ≤ i ≤ s.  If  y ∉V(Cm),  then  d(x,  v/�!
��)  < d(y, v/�!

�� ).  It follows that                      

r(x|W ) ≠ r(y|W ). If y ∈ V(Cm),  then the proof is similar to Subcase 2 of Lemma 5.5. Thus r(G(Ck) ≤ m − β1(G).                       

By Lemma 6.6, r(G(Ck)) ≥ m − β1(G). Hence r(G(Ck)) = m − β1(G). 

Remark 6.8.  If k is odd and δ(G) ≥ 2, then r(C3(Ck)) = 2, r(C4(Ck)) = r[(K4 \ {e})(Ck)] = 3 and r(K4(Ck)) = 4.  

Proof. Let Ci be the edge cycle of the edge ei and V(Ci) = {vi1, vi2, . . . , vik}    Let   ei  =  vi1vik   and   V(Ai)  =  

V(Ci) \ {vi1, vik}.  Let   G ≅  C3.  Then  by Lemma 5.3,  r(C3(Ck))  ≥ 2.  Then we can easily verify that �v��!
�� ,

v��!
�� 0 is  a  resolving  set  of   C3(Ck).   Thus   r(C3(Ck))  =  2.   Let   G ≅  K4 \ {e} or  K4.  Let  e1  and  e2  be  two  

non  adjacent  edges  in  G.  By  Lemma 5.3, r[(K4 \ {e})(Ck)] ≥ 3  and  r(K4(Ck)) ≥ 4. Let                                              

W1 = �v%�!
��, v&�!

�� , v1�!
���  and W2 = �v%�!

��, v&�!
�� , v1�!

��, v2�!
�� �. Then we can easily verify that W1 and  W2  are  the  

resolving  set  of  [K4 \ {e}](Ck)  and  K4(Ck)  respectively. Thus r[(K4 \ {e})(Ck)] = 3 and r(K4(Ck)) = 4. 

          Let   G ≅  C4.  By Lemma 5.3,  r(C4(Ck))  ≥  2.  But we claim that r(C4(Ck)) ≥ 3. Suppose that r(C4(Ck)) = 2. 

Let W = {w1, w2} be a resolving set of C4(Ck). Let E(C4) = {e1, e2, e3, e4}, where e1, e3 are non adjacent edges and 

e2, e4  are non adjacent edges.  By Lemma 5.3,  let  W ∩  V(A1) =  ∅, W ∩ V(A2) ≠ ∅, W ∩ V(A3)  =  ∅  and                    

W ∩ V(A4) ≠ ∅. Let v11 =   v4k, v1k  = v21, v2k =  v31  and   v3k   =  v41.  If either   W = �v��!
��, v&�!

��� or W = 

�v��!
��,   v&�!

���, then there exist two shortest paths between w1 and w2, which is a contradiction to Theorem 2.4. If w1 

lies on v22-v�(�!
��� �)path, then r(v2(k - 1)|W) = r(v32|W), which is a contradiction. If W = �v��!

��, v&(�!
��� �) �, then r(v1(k-

1)|W) = r(v2k|W), which is a contradiction. Thus r(C4(Ck)) ≥ 3. Let W = �v��!
��, v��!

�� , v%�!
���. Then we can easily 

verify that W is a resolving set of C4(Ck) and hence r(C4(Ck))= 3. 



 

Resolving Number of Edge Cycle Graphs 

-15- 

Lemma 6.9. Let G be a graph of order n ≥ 5, size m and δ(G) = 1. If P denotes the set of all pendant edges of G, 

then r(G(Ck)) ≥ m − β1(G \ P ). 

Proof.  By Lemma 2.7, every resolving set of  G(Ck)   contains at least one non  cut vertex from each  end block of  

G(Ck)   and using Theorem 5.6 and Lemma 6.6, r(G(Ck)) ≥ m − β1(G \ P ). 

 

Theorem 6.10.  Let G be a graph of order n ≥ 5, size m and δ(G) = 1.Let P denote the set of all pendant edges of G. 

If k is odd, then r(G(Ck)) = m − β1(G \ P ). 

Proof.  Let V (G) = {v1, v2,  . . . , vn}, E(G) = {e1, e2, . . . , em} and Ci be the edge cycle of ei. Let β1(G \ P ) = s and 

|P | = p.  Let M   =  {e1, e2, . . . , es}  be the  maximum edge  independent set of  

G \ P and P = {es+1, es+2,  . . . , es+p}. Let V (Ci) = {vi1, vi2,  . . . , vik} and ei = vi1vik, 1 ≤ i ≤ m. Let  

W = �v(3��)�!
��, , v(3��)�!

��. . ., v/�!
�� �. We claim that W is a resolving set of G(Ck). Let x, y be two  distinct vertices 

of V(G(Ck)) \ W. 

         If x, y ∈ V(Ci) for some s + 1 ≤ i ≤ s + p, then without loss of generality, let x, y ∈ V(Cs+1). Let d(v(s+1)1) = 2 in 

G(Ck). If d(x, v(3� �)�!
��) ≠ d(y, v(3� �)�!

��),  then  r(x|W) ≠ r(y|W). So we may assume that d(x, v(3� �)�!
��) = d(y, 

v(3� �)�!
��). Then x lies on v(3� �)�!

��- v(s+1)1 path and y lies on v(3� �)�!
��- v(s+1)k path. Therefore d(x, w) = d(y, w) + 1 

for all w ∈ W \ {v(3� �)�!
��}. It follows that r(x|W) ≠ r(y|W). If x ∈ V(Cs+1), y ∉ V(Cs+1), then d(x, v(3� �)�!

��) <       

d(y,

 

v(3� �)�!
��).  It follows that r(x|W) ≠ r(y|W).  If  x, y ∉ V(Ci)  for all  s + 1 ≤ i ≤ s + p,  then the proof is similar 

to Case 1 and Case 2 of Theorem 6.7. Thus r(G(Ck)) ≤ m − β1(G \ P ). By Lemma 6.9, r(G(Ck)) ≥ m − β1(G \ P ). 

Hence r(G(Ck)) = m − β1(G \ P ). 

 

Remark 6.11.  If k is odd and δ(G) = 1, then r(P3(Ck)) = 2 and r[(K1, 3)(Ck)] = r[(K1 + (K2 ∪ K1))(Ck)] = 3. 

Proof. Let Ci be the edge cycle of the edge ei and V (Ci) = {vi1, vi2, . . . , vik}. Let ei =  vi1vik.  By Lemma 6.9, 

r(P3(Ck))  ≥ 2.  Let E(P3)  =  {e1, e2}. If W1 = �v��!
��, v��!

���, then we can easily verify that W1 is a resolving  set  of   

P3(Ck).  Thus   r(P3(Ck)) ≤  2   and  hence   r(P3(Ck))  = 2 . If G  ≅ K1,3,  then  let   E(G)  =  {e1, e2, e3}.  If   G ≅  K1 + 

(K2 ∪ K1),  then let  E(G) = {e1, e2, e3, e4}  and  e4 = uv,  where  d(u) = d(v) = 2.  If  W2 = �v��!
��, v��!

��, v%�!
�� �, then 

we can easily verify that  W2 is a resolving set of   G(Ck).  Thus   r(G(Ck)) ≤  3.  By  Lemma  6.9,   r(G(Ck))  ≥  3   

and  hence r(G(Ck)) = 3. 

 

Remark 6.12. Since s ≥ 1, it follows from theorems 6.2 and 6.4 that, r(G(Ck)) ≤ m + p − 1. From Theorem 6.3, 

equality holds if and only if G ≅ K1, n - 1. 
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ABSTRACT : 

The object of this paper is to establish Mellin and Laplace transform involving the product of Struve's function  

[ ]
,k

v,y,uH zλ and I-function of two variables. Some special cases have also been derived. 

Keywords: Mellin transforms, Laplace transform, Struve's function and I-function of two variables 

 

1. INTRODUCTION 

Recently, The Mellin transform and Laplace transform of product of Struve’s function with H-function of two 

variables [3 , 5 ] evaluated.  In the present paper we establish the same transforms of I-function of two variables 

with Struve’s function. 

We shall utilize the following formulae in the present investigation.  The I-function of one variable given by Rathie 

Arjun K [4] 

 ∫=








L

s

j

j

dszs
i

q
B

jj
b

p
A

jj
a

znm
qp

I )(
2

1

,1
);,(

,1
);,(

,
,

φ
πβ

α

      (1.1) 

Where 

j j

j j

B A

B A

m n
(b s) (1 a s)j j j j

j 1 j 1
(s)

q p
(1 b s) (a s)j j j j

j m 1 j n 1

Γ −β Γ − + α∏ ∏

= =
ϕ =

Γ − + β Γ − α∏ ∏

= + = +  

Where Aj( j = 1, …. , p) and Bj (j = 1, …., q) are not in general positive integers 

Also  (i) z ≠ 0 

         (ii) 1−=i  

        (iii) m, n, p, q are integers satisfying 0 ≤ m ≤ q, 0 ≤ n ≤p 

        (iv) L is suitable contour in the complex plane 

        (v) An empty product is interpreted as unity 

        (vi) αj (j = 1, …., p); βj( j = 1, …., q); Aj(j = 1, …., p) and Bj(j = 1, …., q) are positive numbers 

       (vii) aj( j = 1,…., p); bj( j = 1,…., q) are complex numbers such that no singularity of     

           )( sb jj

B j
β−Γ  , (j = 1, …., m) coincides with any singularity of )1( sa jj

A j
α+−Γ  

          ( j = 1, ….,  n). In general singularities are not poles. 

The detailed conditions can be found in Rathie Arjun K [ 4 ] 

The I-function of two variables given by Shantha Kumari et al. [6] 
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(a ;a , A ; x ) : (c ,C ;U ) ;z j j j j 1, p j j j 1,p0,n : m ,n ;m ,n 1 1 21 2 2 3 3I[z , z ] I1 2 p ,q : p ,q ;p ,q z (b ;b , B ;h ) : (d ,D ;V ) ;1 1 2 2 3 3 2 j j j j 1,q j j j 1,q1 2


= 
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j

3

j
3

(e , E ;P )j j 1,p

(f , F ;Q )j j 1,q
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1 s t(s, t) (s) ( t)z z dsdt12(2 i) L Ls t

ϕ θ θ∫ ∫
π

         (1.2) 

   where   
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where  nj, pj, qj(j = 1, 2, 3), mj(j = 2, 3) are non negative integers such that 0 ≤ nj ≤ pj, q1≥ 0,  

0 ≤ mj ≤ qj(j = 2, 3) (not all zero simultaneously). αj, Aj(j = 1, ….,  p1); βj, Bj(j = 1, …., q1),  

Cj(j = 1, …., p2), Dj(j = 1, …., q2), Ej(j = 1, …., p3), Fj(j = 1, …., q3) are positive quantities. aj(j = 1, …., p1), bj(j = 

1, …., q1), cj(j = 1, …., p2), dj(j = 1, …., q2), ej(j = 1, …., p3) and fj(j = 1, …., q3) are complex numbers. The 

exponents ξj, ηj, Uj, Vj, Pj, Qj may take non integer values. 

Ls and Lt are suitable contours of Mellin-Barnes type. More over, the contour Ls is in the complex s-plane and runs 

from σ1-i∞ to σ1+i∞ (σ1 real), so that all the poles of  

)( s
j

D
j

d
j

V
−Γ (j = 1, …., m2) lie to the right of Ls and all poles of )1( s

j
C

j
c

j
U

+−Γ (j = 1, …., n2), 









++−Γ t
j

As
jj

a
j

α

ξ

1 (j = 1, …., n1) lie to the left of Ls. Similar conditions for Lt follows in complex t-plane. 

The detailed conditions of this function can be found in Shantha Kumari et al.[6]. 
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According Erdelyi [ 1 ,p.307] 
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π
        (1.3) 

The Struve’s function defined by Kanth [2] as 

[ ] ∑
∞

=

++

++Γ+Γ


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0
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mv

m

k

uyv
umvykm

z

zH
λ

λ
,        (1.4) 

Re(k) > 0,Re(λ) > 0,Re(y) > 0,Re(v + u) > 0 

 

The Mellin transform of the function f(x) is defined as 

{ } 0)Re(,

0

)(1);( >∫
∞

−
= sdxxf

s
xsxfM

    (1.5)

 

If Laplce transform of f(t) is F(p) and G(s) is Mellin transform of f(t), then 

s( p)
F(p) G(s 1)

s!s 0

∞ −
= +∑

=          (1.6) 

 

2. MAIN RESULTS 

Theorem 1: Prove that 

h (a ; , A ; ) : (c ,C ; U ) ;1 j j j j 1, p j j j 1, pz x0, n : m ,n ;m , n 1 2,k 11 2 2 3 3M H ax Iv, y, t p ,q : p ,q ;p ,q h (b ; ,B ; ) : (d ,D ;V ) ;1 1 2 2 3 3 2 j j j j 1,q j j j 1,qz x 1 22
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Where Ω(m) = ρ(v+2m+1) 

Provided h1 > 0, h2 > 0, λ, a are complex numbers 
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Proof: 

To prove this theorem, take f(x) as  
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The expression becomes 
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h (a ; , A ; ) :1 j j j j 1,pz x0,n : m ,n ;m , n 1, ks 1 11 2 2 3 3x H ax Iv, y, t p ,q : p ,q ;p ,q h (b ; , B ; ) :1 1 2 2 3 3 2 j j j j 1,q0 z x 12
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Use (1.2) and (1.4) to represent extended general class of polynomials as series and integral form of I-function of 

two variables in the above integral, of two variables t1 and t2.  Put h2t2 = -u,  

We get 
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Interchange the order of integration, we get 
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Use result (1.3) and (1.1) to get the result.  Change of order of integration is justifiable due to convergence of 

integrals. 
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Where Ω(m) = ρ(v+2m+1) 

Proof: Proof of above theorem can be easily obtain by using (1.6) 

 

3. SPECIAL CASES 

(i) 
Take  ρ = 0, a = 1 in (2.1) and (2.2), we get Mellin and Laplace transform of 

 
I-function of two variables

 

(ii) 
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Where Ω(m) = ρ(v+2m+1) 
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transform for G-function with general class of polynomials 
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 (3.4) 

Where Ω(m) = ρ(v+2m+1) 

4. CONCLUSION 

On specialization of parameters in I-function of two variables, we get various special functions[7 ].   So, with 

results of this paper we get Mellin and Laplace transform or various special functions with Struve’s function as 

special cases. 
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ABSTRACT : 

A discrete state space and continuous parameter stochastic model for two unit hot standby database system with 

standby database under constant observation of database administrator (DBA) has been developed. The primary 

unit is synchronized with hot standby unit through online transfer of archive redo logs. Standby database unit is 

always kept under constant observation of DBA to check either its synchronization with primary unit is working 

properly or not. Failure of database unit either primary or standby is also dealt by of DBA. The system is 

analyzed by making use of semi-Markov process and regenerative point technique. Mathematical expressions for 

various performance indicating measures of the system has been obtained and economic analysis has been done. 

Numerical examples are also discussed on the basis of data collected to illustrate the behavior of model 

developed. Bounds for various costs pertaining to the profitability of the system have also been obtained. 

Keywords : Database system, hot standby, constant observation, semi-Markov processes, regenerative point 

technique. 

 

1.  INTRODUCTION 

Data collection, analysis and security are significant issues in today’s competitive world. Database systems 

designed by companies like Oracle, Microsoft, IBM etc. provides solutions to such vital issues. These systems  are 

used to preserve the data for the industries functioning  in various sectors like Telecommunication, Automobile, Gas 

& Oil, Transportation, Education, Medical, Finance, Marketing, Banking, Textile & Garments etc. Any type of 

operational error in these systems may cause substantial loss of data, resources and revenue as a whole. So, 

reliability, availability and economic analysis of these automated database systems is really needed in the present 

scenario. The present paper is an attempt to analyze two unit hot standby database system wherein standby unit is 

kept under constant observation.  

In the literature of reliability, standby systems have been discussed very comprehensively by large number of  

researchers. El-Said and El-Sherbeny [1] did the profit analysis of two unit cold standby system with preventive 

maintenance and random change in units. Parasher and Taneja [2]  discussed   reliability and profit evaluation of  

PLC hot standby system. Goyal et al. [3] studied a two unit cold standby system working in a sugar mill with 

operating and rest period. Mahmoud and Moshref [4] analysed two unit cold standby system considering hardware, 

human error failures and preventive maintenance by considering all the time distributions arbitrary.  Mathews et al. 

[5] carried out reliability analysis of identical two unit parallel CC plant system operative with full installed 

capacity. Modelling of a deteriorating system with repair satisfying general distribution was done by Yuan and Xu 

[6].  Jain and Rani [7] discussed availability for repairable system with warm standby, switching failure and reboot 
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delay. Huang et al. [8] studied a reliability model of warm standby configuration with two identical set of units. 

Batra and Kumar [9] did the stochastic modeling of printed circuit boards manufacturing system under different 

conditions. Manocha et al. [10] did the stochastic analysis of two unit hot standby database system. The present 

study deals with two unit hot standby database system comprised of primary database unit synchronized with hot 

standby unit through the online transfer of redo log files. However, hot standby unit is kept under the constant 

observation of DBA.  

 

2.  SYSTEM DESCRIPTION AND ASSUMPTIONS     

 Schematic functioning of proposed two unit hot standby database system is shown in Figure 1.Under normal 

circumstances, all redo log files created at the primary site are archived at standby site. In case of failure of primary 

unit, its repair is done immediately by the DBA and pre-synchronized hot standby unit act as standard production 

unit to assure continuous or smooth run of process. Here the cost of using hot standby unit as primary unit will be 

recurred by user of system itself. Further, on the failure of primary unit, it is also observed that  redo files are not  

created as well as updated in standby unit. Hence, it may cause serious loss of data. At this juncture, to enhance the 

reliability of system, standby unit is  kept under constant supervision of DBA. In such a situation, probability of 

non-creation of redo log files in standby unit is almost zero. For availing this facility, the additional incurred cost 

has to be meted out by the user.   

 

 
Figure 1 Two Unit Hot Standby Database System  

 

However, non-updation of redo log files in standby unit may be faced but with lower probability. Considering these 

situations modelling of the system has been done. The proposed system has single DBA facility which performs 

dual task of repairing the failed unit as well as observing the standby unit. After each repair, the system works as 

good as new. Time to failure, repair, non-updation of redo log files and updation of redo log files are independent 

and identically distributed random variables. Time to failure of a unit and time to non-updation of redo log files 

follows exponential distribution whereas time for repair and updating redo log files follow general distributions. 

 

3.  MATERIALS AND METHODS                                                                            

By using semi-Markov process and regenerative point technique a discrete state space and continuous time 

stochastic model of a two unit hot standby database system, wherein standby unit is kept under constant observation 

has been developed. Mathematical expressions for various performance indicating measures of the system such as 

Mean time to system failure, Mean time to failure of primary database unit, Availability of primary database unit, 

Busy  period of DBA, Expected number of visits by the DBA and profit function has been obtained. Numerical 

examples are discussed on the basis of data collected.Bounds for various costs which affect the profitability of the 

system have also been obtained. 
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4.  NOMENCLATURE 

λ / α constant failure rate of primary/ standby database unit   

 β   rate at which redo log files are not updated in standby database unit 

E E⁄  set of regenerative / non-regenerative states 

Mi(t) probability that primary database unit up initially in regenerative state  i  is up  at time t without 

passing through any other regenerative state or returning to itself through one or more non-

regenerative state 

g(t)/G(t) pdf/cdf of the time for repairing the primary database unit 

g1(t)/G1(t) pdf/cdf of the time for repairing the standby database unit 

h(t)/H(t) pdf/cdf  of the time for updating the redo log files in the standby database unit   

qij(t)/ Qij (t) pdf /cdf of time for the system transits from regenerative state i to j  

q��
��	�t	/Q��

��	�t	   pdf / cdf of time for the system transits from regenerative state i to j via non-regenerative state k 

® / © symbol for Stieltjes / Laplace convolution   

** / * symbol for Laplace- Stieltjes/ Laplace Transformation     

 

5.  FORMULATION OF MATHEMATICAL MODEL 

Symbols for the states of the system are 

P0   primary database unit is operative 

Hs/ Hr/ HR   hot standby (database)/ under repair/ repair from previous state 

S0                            hot standby database unit is used as primary database unit  

Sr / Sw/ SR     hot standby unit (used as primary database unit) is under repair/ waiting for repair /  repair from 

previous state 

Fr / FW/ FR failed unit under repair / waiting for repair / repair from previous state 

HSAD   redo log files were not updated in hot standby database unit 

Based on system description and assumptions, the system may be in any of the following states : 

State 0: (P0, HS)       State 1: (P0, HSAD )        State 2: (P0, Hr)      State 3: (Fr,S0)     State 4: (Fw, HSAD )         

State 5: (Fw, HR)       State 6: (FR, Sw)              State 7: (P0,Sr)        State 8: (Fw, SR) 

The possible transitions between these states are shown in Figure 2. 

 

 
Figure 2 State transition diagram 
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Here, E={0, 1, 2, 3, 7}is a set of regenerative states whereas E= {4, 5, 6,8} is a set of non-regenerative  states. 

States  0, 1, 2 , 3 and 7 are up states whereas states 4, 5, 6, and 8 are failed states. 

LetT0 (≡ 0), T1, T2,----- be the epochs at which system enters any state iϵ E and let X� be the state visited at epoch in 

T��� i.e. just after transition at T�. Then { X�, T�} is a Markov-renewal process with state space E and  q�� =

P�X��� = j, T��� −  T� ≤  X� = i� is the semi-Markov kernel over E. The transition probability matrix (t.p.m.) of 

the embedded Markov chain is P = �p��� =  q���∞	 = q�∞	!.  

By probabilistic arguments, the non-zero elements p�� are,                                                                                                                  

p#� = $ βe&�λ�α�β	'∞

# dt,             p#) = $ αe&�λ�α�β	'dt∞

# ,              p#* = $ λe&�λ�α�β	'∞

# dt,                                                                        

p�# = $ e&λ'∞

# h�t	dt,                  p�, = $ λe&λ'H∞

#
�t	dt,                p�*

�,	 = $ �λe&λ'©1�h�t	dt∞

# ,                          

p)# = $ e&λ'g�
∞

#
�t	dt,                p)0 = $ λe&λ'G�

∞

#
�t	dt,               p)*

�0	 = $ �λe&λ'©1	g��t	dt∞

# ,     

p*# = p2# = $ e&λ'g∞

#
�t	dt,        p*3 = $ λe&λ'G∞

#
�t	dt,                 p*2

�3	 =  p2*
�4	 = $ �λe&λ'©1�g�t	dt ∞

#                                 

It can be verified that,  

p01 + p02 +p03 =1                       p10 + p14=1,                       p10+  p�*
�,	

=1,                                 p20 + p25=1,                                                       

p20+ p)*
�0	 = 1                            p30 + p36 =1,                      p30+ p*2

�3	
=1,                                  p70+ p2*

�4	
=1, 

Mean Sojourn time in regenerative state  i∈ E  is given as : 

µ# = $ e&�λ�α�β	'dt∞

# ,    µ� = $ e&λ'H6�t	dt∞

# ,  µ) = $ e&λ'G�777�t	∞

# dt,     µ* = µ2 = $ e&λ'G6�t	dt,∞

#                     

The contribution to mean sojourn time when system transit for any regenerative state j when it (time) is counted 

from the epoch of entrance into state i is given as: 

m01 + m02 +m03 = µ#,                                m10 + m14 = µ1,                                                 m20 + m25 = µ2,                                   

m30 + m36= µ3,                               m10 + m�*
�,	

=−h∗′(0) = K1 (say),                             

m20 + m)*
�0	 =−g�

∗′(0) = K2 (say),             m30 + m*2
�3	

= m70 + m2*
�4	

 =−g∗′(0)= K3 (say)             

                                                           

6.  MEASURES OF SYSTEM EFFECTIVENESS 

6.1  Mean Time to System Failure (MTSF) 

Let π��t	 be c.d.f. of the first passage time from regenerative state i∈ E  to a failed state. Regarding the 

failed state as absorbing state,  the recursive relations for ‘π��t	’ are: 

π0(t) = Q01(t) ®  π1(t) + Q02(t) ® π2(t) + Q03(t) ®  π3(t)  

π1(t) = Q14 (t) + Q10 (t) ® π0(t)  

π2(t) = Q25(t)+ Q20 (t) ® π0(t)  

π3(t) =  Q36(t)+  Q30 (t) ®  π0(t) 

 By taking Laplace-Stieljes transformation of the above equations and solving them for π0
**

(s),We obtain  π0
**

(s)=

 N�s	 D�s	⁄  

where, N(s) = Q03
**

(s) Q36
**

(s) + Q01
**

(s) Q14
**

(s) + Q02
**

(s) Q25
**

(s) 

and  D(s) = 1– Q01
**

(s) Q10
**

(s) – Q02
**

(s) Q20
**

(s) – Q03
**

(s) Q30
**

(s)   

The reliability of the system at time t is given by,     

R(t)= L&�=�1 − π#
∗∗�s	� s⁄ > 

and the mean time to system failure (MTSF) when the system starts from state’0’ is 
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MTSF = lim
C→#

�1 − π#
∗∗�s	� s⁄ = N D⁄  

where,  N= (µ0 + p01 µ1 +p02µ2 + p03 µ3 )      and       D= (1– p01p10 – p02 p20 – p03 p30)      

 

6.2 Mean Time to Failure of Primary Database Unit (MTFP) 

Let TPi(t) be the c.d.f. of the first  passage time of primary database unit from regenerative state i∈ E  to the 

state where  it is failed. The recursive relations for ‘TPi(t)’ are: 

TP0(t) = Q03 (t) + Q01(t) ® TP1(t) + Q02(t) ®TP2(t)                                                                                                                                 

TP1(t) = Q14(t) + Q10 (t) ®TP0 (t) 

TP2(t) = Q25 (t) + Q20(t) ® TP0(t)  

 The mean time to failure of primary database unit when the system start from state ‘0’ is given by  

MTFP =  lim
C→#

�1 − TP#
∗∗�s	� s⁄ = N� D�⁄   

where,  N1 = (µ0 + p01 µ1 +p02µ2 )      and      D1= (1 – p01p10 – p02 p20 )                                                                           

6.3 Availability of Primary Database Unit (AP0) 

 Let APi(t) be the probability that the primary database unit is in upstate at instant t given that the system 

entered regenerative state i∈ E at  t = 0. The recursive relations for ‘APi(t)’ are: 

AP0(t) = M0(t) + q01(t)© AP1(t) + q02(t)© AP2(t) + q03(t)© AP3(t)  

AP1(t) = M1(t)+ q10 (t) © AP0(t) + q�*
�,	�t	 © AP3(t) 

AP2(t) = M2(t)+ q20 (t) © AP 0(t) +q)*
�0	�t	 © AP3(t) 

AP3(t) = q30(t) © AP0(t) + q*2
�3	�t	 © AP7(t) 

 AP7(t) = M7(t)+ q70(t) © AP0(t) + q2*
�4	�t	 © AP3(t)                     

where,    M0(t) =  e&�λ�α�β	',       M1(t) =  e&λ'H6�t	,            M2(t) = e&λ'G�777�t	,               M7(t) = e&λ'G6�t	                                                      

By taking Laplace transform of the above equations and solving them for AP0
*
(s), We obtain  

 AP0
*
(s)=  N)�s	 D)�s	⁄  

where  N2(s) = {M0
*
(s) + q01

*
(s) M1

*
(s) + q02

*
(s) M2

*
(s)}{1 − q*2

�3	*
(s) q2*

�4	*
(s)} 

                        + q*2
�3	*

(s) M7
*
(s){ q01

*
(s) q�*

�,	*
(s)+ q02

*
(s) q)*

�0	*
(s)+ q03

*
(s)} 

and      D2(s) = {1– q01
*
(s) q10

*
(s) – q02

*
(s) q20

*
(s)}{1– q*2

�3	*
(s) q2*

�4	*
(s)} 

                        −{ q30
*
(s) + q70

*
(s) q*2

�3	*
(s)}{ q01

*
(s) q�*

�,	*
(s)+ q02

*
(s) q)*

�0	*
(s)+ q03

*
(s)}  

In steady-state the availability of primary database unit, is given by 

AP# = lim
'→∞

AP#�t	 = lim
C→#

sAP#
∗ �s	 = N) D)⁄  

where, N2 = �1 − p*2
�3	p2*

�4		 (µ0 + p01 µ1 + p02µ2) + (1 – p01p10 – p02 p20 ) p*2
�3	

µ7                    

  and     D2 = �1 −  p*2
�3	p2*

�4		 (µ0 + p01K1 + p02 K2 ) + (1 – p01p10 – p02 p20) (K3+ p*2
�3	  

K3)   

Similarly, employing the same argument discussed as above, the mathematical expressions for other performance 

indicating measures of the system are:   

Expected time for which standby database unit worked as primary database unit (S0) = N* D)⁄  

Expected time for updating the redo log files in standby database unit (AU0) = N, D)⁄  

Expected time for repairing primary database unit (BP0) = N0 D)⁄  
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Expected time for repairing standby database unit (BH0) = N3 D)⁄  

Expected number of visits by DBA (V0) = N2 D)⁄  

where, N* = �1 − p#�p�# − p#)p)#	µ* ;   N4= p#��1 − p*2
�3	p2*

�4		K� ;  N0 = �1 − p#�p�# − p#)p)# 	�K� +

 p*2
�3	K�	 ;   N3 = �1 −  p*2

�3	p2*
�4		p#)K)  ;     N2 = �1 −  p*2

�3	p2*
�4		        

                                                                                                                                                                           

7.  COST-BENEFIT ANALYSIS 

As the profit is defined as excess of revenue over the cost of production. So, in steady-state, the expected profit per 

unit time incurred to the system is given by 

Profit (P) = C0AP0 – C1S0 – C2AU0– C3BP0 – C4BH0 – C5V0 –2CI– K                   

Where, C0 = Revenue per unit uptime                                

C1 = Cost per unit time for which standby database unit worked as primary database unit                                

C2 = Cost per unit time for updating the redo log files in standby database unit                                            

C3 = Cost per unit time for which DBA is busy for repairing primary database unit                                         

C4 = Cost per unit time for which DBA is busy for repairing standby database unit                                            

C5 = Cost per visit of DBA                                                                                                                                

CI= Cost per unit time of Initial Installation                                                                                                   

K= Cost per unit time for which standby database unit is kept under constant observation 

 

8.  NUMERICAL CALCULATIONS, RESULTS & DISCUSSION 

To illustrate the mathematical expressions  obtained for the above model with  a numerical examples, we consider 

h�t	 = γe&γ' , g�t	 = η e&η', g��t	 = α�e&αI'.The data on various rates and costs for primary/standby database unit 

collected from different users are : 

Constant failure rate of primary database unit (λ) = 0.00205 per hr 

Constant repair rate of primary database unit (η) = 0.6529 per hr 

Constant failure rate of standby database unit (α) = 0.00087 per hr 

Constant repair rate of standby database unit (α1) = 0.8533 per hr 

Cost   per unit time for which DBA is busy for repairing primary database unit (C3) = 7325.58 

Cost per unit time for which DBA is busy for repairing standby database unit (C4) =  8750 

and rest of the values are assumed values. 

8.1 Effect of rates (β, γ) on MTSF and availability of primary database unit ( AP0) 

MTSF and availability of primary database unit (AP0) are calculated by varying the rate (γ) for different values of 

rate (β). The results are shown in Table 1. It is observed that, 

(i). MTSF increase with the increase in the values of rate (γ) and it has higher values for lower values of rate (β). 

(ii). Availability of primary database unit (AP0) increase with the increase in the values of rate (γ) and it has higher 

values for lower values of rate (β). 

 

 

 

 

 

 
Table 1 Values of MTSF and AP0 w.r.t. rate (J) for different values of rate (β) 

γ MTSF (In hrs) Availability (AP0) 

                        β =0.06 β =0.07 β = 0.08 β =0.06 β =0.07 β  = 0.08 

5 30707.91 27375.01 24707.3 0.996863 0.996862 0.996861 

6 34980.74 31341.14 28403.07 0.996864 0.996864 0.996863 

7 38851.62 34976.33 31812.98 0.996865 0.996865 0.996864 

8 42377.33 38309.9 34967.79 0.996866 0.996865 0.996865 

9 45602.07 41396.71 37914.56 0.996866 0.996866 0.996866 

10 48571.55 44252.57 40648.3 0.996866 0.996866 0.996866 



 

Analysis of Hot Standby Database System with Standby unit under Constant Observation 

-31- 

8.2 Effect of revenue (C0) on profit (P) for different values of rate (β) 

Figure 3 depicts the behavior of profit (P) with respect to revenue (C0) for different values of rate (β) by 

considering other parameters as γ = 12, CI = 5, K = 3, C� = 50, C) = 500, C0 = 700 . It is interpreted that profit 

(P)   increases with increase in the revenue (C0) and has higher values for lower values of rate (β).  

 

 
Figure 3 Profit (P) versus Revenue (C0) for different values of rate (β) 

 Further, 

i. For β =0.06, the profit(P) > or = or < 0  according as C0 > or = or < 91.40. Hence for β =0.06, the revenue 

should be more than 91.40 to get the profit. 

ii. For β =0.07, the profit(P) > or = or < 0  according as C0 > or = or < 98.72. Hence for β =0.07, the revenue 

should be more than 98.72 to get the profit. 

iii. For β =0.08 , the profit(P) > or = or < 0  according as C0 > or = or < 106.03. Hence for β =0.08, the revenue 

should be more than 106.03 to get the profit.  

 

8.3 Effect of Cost (C2) on profit (P) for different values of cost (C5) 

The profit (P) of the system has been calculated with respect to cost (C2) for different values of cost (C5) by fixing 

another parameters such as γ = 12, β = 0.01 , CI = 5, K = 2, C# = 56, C� = 50, Figure 4 reveals the behavior of 

profit (P) with respect to cost (C2) for different values of cost (C5). 

 
Figure 4 Profit (P) versus Cost (C2) for different values of cost (C5) 
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It can be interpreted that  

Profit ( P) decreases with increase in  the  cost (C2 ) has higher values for lower value of cost (C5 ).  

(i). For C5 =700, the profit(P) > or = or < 0 according as  C2 < or = or > 2160.85. Hence for C5 =700, the cost for 

updating the redo log files should not be more than 2160.85  to get the profit.  

(ii). For C5 =725, the profit(P) > or = or < 0 according as C2 < = or = > 1773.24 Hence for C5 =725, the cost for 

updating the redo log files should not be more than 1773.24 to get the profit. 

(iii). For C5 =750, the profit(P) > or = or < 0  according as C2 < = or = > 1385.64. Hence for C5 =750, the cost for 

updating the redo log files should not be more than 1385.64 to get the profit.  

 

CONCLUSION 

 Stochastic model for a standby database system in which standby database unit always kept under constant 

observation of database administrator have been developed. Mathematical expressions for various performance 

indicating measures of the system are obtained. Numerical analysis is done on the basis of collected data. Bounds 

(lower/upper) for revenue and cost for updating the redo log files in standby unit have also been obtained.  

 

REFERENCES 

1. El-Said, K.M., and M.S. El-sherbeny. Profit Analysis of a Two Unit Cold Standby System with Preventive Maintenance 

and Random Change  in Units. Journal of Mathematics and Statistics, 2005; 1(1) : 71-77. 

2. Parashar, B., and G. Taneja. Reliability and Profit Evaluation of a  Plc Hot Standby System Based on a Master- Slave 

Concept and Two Types of Repair Facilities. IEEE Transactions on Reliability, 2007; 56(3) : 534-539. 

3. Goyal, A., G. Taneja , and D.V. Singh. Analysis of a two-unit cold standby system working in a sugar mill with operating 

and rest period . Caledonian Journal of Engineering 2009; 5(1): 1-5.  

4. Mahmoud, M.A.W.,  and M.E. Mosherf. On a two- unit cold standby system considering hardware, human error failures 

and preventive maintenance. Mathematical and Computer Modeling,2010; 51:736-745.  

5. Mathews, A.G., S.M. Rizwan, M.C. Majumdar, K.P. Ramchandarann, and G Taneja. Reliability analysis of identical two 

unit parallel CC plant system operative with full installed capacity. International Journal of Performability Engineering, 

2011; 7(2):179-187. 

6. Yuan, W.Z., and G.Q. Xu. Modelling of a deteriorating system with repair satisfying general distribution. Applied 

Mathematics and Computation, 2012; 218 : 6340-6350.  

7. Jain, M.,and  S. Rani. Availability Analysis for Repairable System with warm standby, switching failure and reboot delay. 

International Journal of Mathematics in Operational Research, 2013; 5(1) : 19-39.  

8. Huang W, J. Lomang,  and T. Song. A reliability model of a warm standby configuration with two identical set of units. 

Reliability Engineering and System Safety, 2015; 133 :237-245. 

9. Batra, S., and R. Kumar. Stochastic analysis of printed circuit boards manufacturing system considering repairs by 

internal/external engineers and arbitrary arrival time of external engineers. International Journal of Pure and Applied 

Mathematics, 2016; 106(1) : 59-74. 

10. Manocha, A., and G.Taneja. Stochastic and cost-benefit analysis of two unit hot standby database system. International 

Journal of Performability Engineering, 2017; 13(1) : 63-72. 

 



-33- 

 

 

 

A COMMON FIXED POINT THEOREM USING COMPATIBILITY OF  

TYPE (A-1) AND WEAKLY COMPATIBILITY 
 

V. Nagaraju*, Bathini Raju** 
*Department of Mathematics, University College of Engineering (Autonomous) Osmania University, Hyderabad (Telangana), India 

**Department of Mathematics, University Post Graduate College, Secunderabad Osmania University, Hyderabad (Telangana), India 

Email: viswanag2007@gmail.com*, bathiniraju107@gmail.com** 

 

ABSTRACT : 

The purpose of this paper is to establish a common fixed point theorem in a metric space using the weaker 

conditions such as compatibility of type (A-1), weakly compatibility and weakly reciprocal continuity. 

Keywords: Fixed point, compatible mappings of type (A-1), reciprocally continuous maps, weakly compatible 

maps and associated sequence. 
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1. INTRODUCTION 

G.Jungck [1] introduced the concept of compatibility which is weaker than weakly commuting maps. In 1993, 

Jungck and Cho [7] introduced the concept of compatible mappings of type (A) by generalizing the definition of 

weakly uniformly contraction maps. Pathak and Khan [10] introduced the concepts of A-compatibility and             

S-compatibility by splitting the definition of compatible mapping of type(A). Pathak et.al [8] renamed                     

A-compatibility and S-compatibility as compatible mappings of type(A-1) and compatible mappings of type(A-2) 

respectively. In 1998, Jungck and Rhoades[4] defined weaker class of maps known as weakly compatible 

mappings. 

R.P.Pant [2] introduced a new notion of continuity namely reciprocal continuity for a pair of self maps and proved 

some common fixed point theorems. In this paper we prove a common fixed point theorems for four self maps in 

which one pair is weakly reciprocally continuous, compatible mapping of type (A-1) and other pair is weakly 

compatible.  

 

2.  DEFINITIONS AND PRELIMINARIES 

2.1 Compatible mappings 

Two self maps S and T of a metric space (X,d) are said to be compatible mappings if lim ( , ) 0
n n

n
d STx TSx

→∞

= , 

whenever nx< >  is a sequence in X such that lim lim
n n

n n
Sx Tx t

→∞ →∞

= = for some t X∈ . 

2.2 Weakly compatible mappings 

Two self maps S and T of a metric space (X,d) are said to be weakly compatible if they commute at their 

coincidence point. i.e., if Su Tu=  for some u X∈ then STu TSu= . 
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2.3 Reciprocally continuous mappings 

Two self maps S and T of a metric space (X,d) are said to be reciprocally continuous, if lim
n

n
TSx Tt

→∞

=  and 

lim
n

n
STx St

→∞

=  whenever nx< >  is a sequence in X such that lim lim
n n

n n
Sx Tx t

→∞ →∞

= = for some t X∈ . 

2.4 Weakly reciprocally continuous mappings 

Two self maps S and T of a metric space (X,d) are said to be reciprocally continuous, if lim
n

n
TSx Tt

→∞

=  or 

lim
n

n
STx St

→∞

=  whenever nx< >  is a sequence in X such that lim lim
n n

n n
Sx Tx t

→∞ →∞

= = for some t X∈ . 

2.5 Compatible mappings of type (A) 

Two self maps S and T of a metric space (X,d) are said to be compatible mappings of type (A) if 

lim ( , ) 0
n n

n
d STx TTx

→∞

=  and lim ( , ) 0
n n

n
d TSx SSx

→∞

=  whenever nx< >  is a sequence in X such that 

lim lim
n n

n n
Sx Tx t

→∞ →∞

= =  for some t X∈ . 

2.6 Compatible mappings of type (A-1) 

Two self maps S and T of a metric space (X,d) are said to be compatible mappings of type(A-1) if 

lim ( , ) 0
n n

n
d TSx SSx

→∞

= whenever { }nx is a sequence in X such that lim lim
n n

n n
Sx Tx t

→∞ →∞

= =  for some t X∈ .  

2.7 Associated Sequence: Suppose P, Q, S and T are self maps of a metric space ( , )X d such that 

( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂ .Then for an arbitrary 0x X∈ there is a point 1x in X such that 0 1Sx Qx= and 

for this point 1x , there is a point 2x in X such that 1 2Tx Px=  and so on. Proceeding in this way, we can obtain a 

sequence ny< > in X such that 2 2 2 1 2 1 2 2 2 1n n n n n ny Sx Qx and y Px Tx
+ + + +

= = = =  for 0n ≥ . We shall call this 

sequence as an “associated sequence of 0x ” relative to the four self maps P,Q,S and T. 

2.8 Lemma: Let P, Q, S and T be self maps from a complete metric space ( , )X d into itself satisfying the 

conditions 

( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂
        (2.8.1) 

and 
( , )[1 ( , )]

( , ) ( , )
[1 ( , )]

d Qy Ty d Px Sx
d Sx Ty d Px Qy

d Px Qy
α β

+
≤ +

+

  

for all x,y in X where , 0, 1.α β α β≥ + <                                (2.8.2) 

Then the associated sequence{ }ny relative to the four self maps P,Q,S and T is a Cauchy sequence in X. 

Proof: From the definition (2.7) and (2.8.2), we have 

2 2 1 2 2 1

2 1 2 1 2 2
2 2 1

2 2 1

2 2 1 2 1 2
2 1 2

2 1 2

2 , 2 1 2 1 2

( , ) ( , )

( , )[1 ( , )]
( , )

[1 ( , )]

( , )[1 ( , )]
( , )

[1 ( , )]

( ) ( , )  implies that

n n n n

n n n n
n n

n n

n n n n
n n

n n

n n n n

d y y d Sx Tx

d Qx Tx d Px Sx
d Px Qy

d Px Qy

d y y d y y
d y y

d y y

d y y d y y

α β

α β

α β

+ +

+ +

+

+

+ −

−

−

+ −

=

+
≤ +

+

+
= +

+

= +

 

2 2 1 2 1 2(1 ) ( , ) ( , )  implies thatn n n nd y y d y yα β
+ −

− ≤   
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           2 2 1 2 1 2 2 1 2( , ) ( , ) ( , ),
(1 )

n n n n n nd y y d y y hd y y
β

α
+ − −

≤ =

−
where

1
h

β

α
=

−

. 

  
2 , 2 1 2 1 2 That is, ( ) ( , )n n n nd y y h y y

+ −
≤                                                                                     (2.8.3) 

Similarly, we can prove that 2 1 2 2 2 2 1( , ) ( , )
n n n n

d y y hd y y
+ + +

≤ .                     (2.8.4) 

Hence, from (2.8.3) and (2.8.4), we have 

2

1 1 2 1 0 1( , ) ( , ) ( , ) ....... ( , ) .                           (2.8.5)n

n n n n n n
d y y hd y y h d y y h d y y

+ − − −
≤ ≤ ≤ ≤

 

Now for any positive integer p, we have  

1 1 2 1

1 1

0 1 0 1 0 1

1 1

0 1

2 1

0 1

( , ) ( , ) ( , ) ........ ( , )

( , ) ( , ) ........ ( , )

( ......... ) ( , )

(1 ....... ) ( , )

n n p n n n n n p n p

n n n p

n n n p

n p

d y y d y y d y y d y y

h d y y h d y y h d y y

h h h d y y

h h h h d y y

+ + + + + − +

+ + −

+ + −

−

≤ + + +

≤ + + +

= + + +

= + + + +

 

               0 1( , ) 0   as  n ,since h<1
1

n
h

d y y
h

< → → ∞

−

.
 

Thus the sequence { }
n

y is a Cauchy sequence in X.  Since X is a complete metric space, the sequence  { }
n

y  

converges to some point z in X. 

2.9 Remark: The converse of the above Lemma is not true. That is, if  P,Q,S and T are self maps of a metric space

( , )X d satisfying (2.8.1) , (2.8.2) and even if for any 0x in X and for any associated sequence of
 0x converges, then 

the metric space ( , )X d need not be complete. 

2.10 Example: Let ( ]0,1X =  with ( , ) | |d x y x y= −  for all ,x y X∈ . Then (X,d) is a metric space. Define the self 

maps S,T,P and Q of X by 

1 1
0

3 2

1 1
1

2 2

if x

Sx Tx

if x


< <

= = 
 ≤ ≤


  and 

1 1
0 1

4 2

1
1 1

2

if x and if x

Px Qx

x if x


< < =

= = 
 − ≤ <


 

Then 
1 1 1

( ) ( ) , while ( ) ( ) 0,
3 2 2

S X T X P X Q X
   

= = = =      
.

 Clearly ( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂ . Also the inequality (2.8.2) can easily be verified for appropriate 

values of , 0, 1.α β α β≥ + < Moreover if we take  
1 1

2 2
nx

n
= +  for 1n ≥ ,then the sequence  

0 1 2 3 2 2 1, , , ,..... , ,.....
n n

Sx Tx Sx Tx Sx Tx
+

converges to
1

2
X∈ . But X is not a complete metric space. 

Now we generalize the result of P.C.Lohani and V.H.Badshah [6] as follows.  

 

3.  MAIN RESULT 

3.1Theorem: Let P,Q,S and T be self maps of a metric space ( , )X d satisfying  the conditions  

( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂         (3.1.1) 
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( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d Qy Ty d Px Sx
d Sx Ty d Px Qy

d Px Qy
α β

+
≤ +

+

      (3.1.2)  

for all , , 0, 1.x y in X where α β α β≥ + <  

The pair (S,P) is compatible mapping of type (A-1) , weakly reciprocally continuous and the pair (Q,T) is weakly 

compatible and           (3.1.3) 

 an associated sequence n
x< > of a point 0x X∈  relative to four self maps P, Q, S and T such that the sequence  

0 1 2 3 2 2 1, , , ...... , ...
n n

Sx Tx Sx Tx Sx Tx
+

converges to some point z X∈ .    (3.1.4) 

Then z is a unique common fixed point of S,P,Q and T. 

        

Proof: By (3.1.4), we have 

2 2 1 2 1 2, ,
n n n n

Sx z Qx z Tx z and Px z as n
+ +

→ → → → → ∞ .
                 (3.1.5)

 

Since the pair (S,P) is compatible mappings of type(A-1), 2 2lim lim
n n

n n
PSx SSx

→∞ →∞

=      (3.1.6) 

Also since the pair (S,P) is weakly reciprocally continuous,  

2 2,
n n

SPx Sz PSx Pz→ → as n → ∞ .        (3.1.7) 

We shall now prove that Sz Pz Qz Tz z= = = = . 

To prove Pz = z, put 2n
x Sx= and 2 1n

y x
+

=  in (3.1.2), we get 

2 1 2 1 2 2
2 2 1 2 2 1

2 2 1

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

n n n n

n n n n

n n

d Qx Tx d PSx SSx
d SSx Tx d PSx Qx

d PSx Qx
α β

+ +

+ +

+

+
≤ +

+

 

Letting n → ∞  and using  (3.1.5), (3.1.6) and (3.1.7) in the above inequality, we get 

 

 

             

( , )d Pz zβ=
   

          ( , ) ,  a contradiction, since , 0 and + <1.d Pz z α β α β< ≥  

 

Thus we have ( , ) 0Pz z = which implies that Pz z= .         (3.1.8)     

To prove Sz z= , put x z= and 2 1n
y x

+
=  in (3.1.2), we get 

2 1 2 1
2 1 2 1

2 1

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

n n

n n

n

d Qx Tx d Pz Sz
d Sz Tx d Pz Qx

d Pz Qx
α β

+ +

+ +

+

+
≤ +

+  

Letting n → ∞  and using (3.1.5) and (3.1.8) in the above inequality, we get 

(z, z)[1 ( , )]
( , z) ( , z)

[1 ( , z)]

d d z Sz
d Sz d z

d z
α β

+
≤ +

+

 

             0≤  which gives that ( , ) 0 .d Sz z =   

 Thus we have ( , ) 0d Sz z = which implies that Sz z= .  

Therefore Pz Sz z= = . 

Since ( ) ( )S X Q X⊂ , there exists u X∈ such that z Sz Qu= = . 

To proveTu z= , put x z= and y u= in (3.1.2), we have 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d Qu Tu d Pz Sz
d Sz Tu d Pz Qu

d Pz Qu
α β

+
≤ +

+

 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d z z d Pz Pz
d Pz z d Pz z

d Pz z
α β

+
≤ +

+
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 ( )
( , )[1 ( , )]

, ( , )
[1 ( , )]

d z Tu d z z
d z Tu d z z

d z z
α β

+
≤ +

+

, 

( , )d z Tuα=  

That is , ( , ) ( , )d z Tu d z Tuα≤ . 

              ( , ),  a contradiction, since , 0 and + <1.d z Tu α β α β< ≥   

Thus we have ( , ) 0d z Tu =  which implies thatTu z= . 

Therefore Tu Qu z= = . 

Since the pair (Q,T) is weakly compatible, QTu TQu=  which gives Qz Tz= .    (3.1.9)           

Finally to proveTz z= , put 2n
x x= and y z= in (3.1.2), we have 

2 2
2 2

2

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

n n

n n

n

d Qz Tz d Px Sx
d Sx Tz d Px Qz

d Px Qz
α β

+
≤ +

+

 

Letting n → ∞ and using (3.1.5) and (3.1.9) in the above inequality, we get 

 

 

 ( , )d z Tzβ=

 

 

             ( , ),  a contradiction, since , 0 and + <1.d z Tz α β α β< ≥

 

Thus we have ( , ) 0d z Tz = which implies thatTz z= .  

ThereforeTz Qz z= = . 

Hence Sz Pz Qz Tz z= = = = , showing that z is a common fixed point of P,Q,S and T.  

Uniqueness: Let z and w be two common fixed points of P,Q,S and T. Then we have z Sz Pz Qz Tz= = = = and 

w Sw Pw Qw Tw= = = = .  

Put x = z and y = w in (3.1.2) , we get 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d w w d z z
d z w d z w

d z w
α β

+
≤ +

+  

            ( , )d z wβ=

           < d(z,w), a contradiction.

 Thus we have ( , ) 0d z w = which implies that z w= . 

Hence z is a unique common fixed point of S,P,Q and T. 

3.2 Remark: From the example (2.8.1) , clearly ( ) ( ) , ( ) ( )S X Q X T X P X⊂ ⊂ and it can easily be verified that 

the pair (S,P) is weakly reciprocally continuous and compatible mapping of type (A-1) and the pair (Q,T) weakly 

compatible as they commute at their coincidence point 
1

2
. Also, if we take 

1 1

2 2
nx

n
= +  for 1n ≥ ,then the 

sequence 0 1 2 3 2 2 1, , , ,..... , ,.....
n n

Sx Tx Sx Tx Sx Tx
+

converges to 
1

2
X∈ .  Moreover, the rational inequality holds for 

the values of , 0, 1α β α β≥ + < .It may be noted that ‘
1

2
’ is the unique common fixed point of P, Q, S and T. 

 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d Tz Tz d z z
d z Tz d z Tz

d z Tz
α β

+
≤ +

+
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ABSTRACT : 

In the present paper, we introduce S1 and S2 spaces with respect to an ideal containing the class of all S1 and S2  

spaces. We shall also give various characterizations of these spaces. 
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1. INTRODUCTION 

 In [8], Shanin introduced the concept of R0 topological spaces. In [2], Davis  studied this week separation 

axiom and also introduced R1 space. In [4], Dorsett investigate some further properties of R0 and R1 spaces and also 

give characterizations of these spaces in terms of nets and closures. In [5], Dunham introduced the concept of 

weekly Hausdorff space and proved that it is equivalent to R1 space. In [1], Csàszàr, call these R0 and R1 spaces as 

S1 and S2 spaces respectively and give various properties of S1 and S2  spaces. On the other hand the study of 

separation axioms via ideals is also a well researched topic in the literature. Ideals in topological spaces have been 

used to study topological properties introduced by Kuratowski[7] and Vaidyanathaswamy[9], where an ideal � on a 

topological space (X, τ) is a collection of subsets of X which is closed under finite unions and closed downwards 

i.e. every subset of a member of � is in �. Further a new topology τ
*
(�, τ) called the *-topology is given which is 

generally finer than the original topology and the corresponding kuratowski closure operator for the *-topology is 

given by cl
*
(A) = A ∪ A

*
(�,τ)[10], where A

*
(�,τ) = {x ∈ X : U ∩ A ∉ � for every open subset U of x in X called a 

local function of A with respect to � and τ. We will write A
*
 for A

*
(�,τ) and τ

*
 for τ

*
(�, τ). 

In this paper, we will give idealization of S1 and S2 spaces, which we call S1 mod � and S2 mod � spaces 

respectively containing the class of all S1 and S2 spaces. The relationship of these spaces among themselves and 

with the known spaces are investigated.  We also give characterization of S1 mod � spaces in terms of closure of a 

point in the given topology and its *-topology (Theorem 3.3 and 3.4 below) and also in terms of convergence of 

filter (Theorem 3.6 below). Further, characterizations of S2 mod � spaces in terms of closure of a point and Kernel 

of a point (Theorem 4.7 and 4.9 below) and in terms of �-convergence of a filter (Theorem 4.8 below) are given. 

 

2. PRELIMINARIES 

 The following section contains some definitions and results that will be used in our further sections. 

Given an ideal topological space (X, τ, �), the collection β = { V-I : V ∈ τ and I ∈ �} will form a basis [10] for the 

*-topology τ
*
. Also for any subset A of X, �A = { I ∈ � : I ⊂ A} is an ideal on A and (τ|A)

*
( �A ,τ|A) = τ

*
|A [6]. 

And an ideal � is said to be codense [3] if τ∩� =�. 

Definition 2.1.  Let (X, τ) be a topological space. A filter ℱ on X is a collection of non-empty subsets of X such 

that (a) � ∉ ℱ (b) A ∈ ℱ and B ∈ ℱ implies A∪B ∈ ℱ (c) A ∈ ℱ and A ⊂ B implies B ∈ ℱ. 
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Also for any point x of X, ℱ is said to be convergent to x written ℱ → x if for every open subset U of x in X, U ∈ 

ℱ. The collection of all such points is denoted by lim ℱ. 

Definition 2.2.[4] Let (X, τ) be a topological space, then for any point x of X, Ker{x}= ∩{ G : G is open subset of 

x}. 

Definition 2.3.  A topological space (X, τ) is said to be  

(a) S2 space[1](R1 in sense of [2] [4] [5]) if for every pair of distinct points x and y, whenever cl{x} ≠ cl{y} then 

there exist disjoint nhds. containing them. 

(b) S1 space[1](R0 in sense of [2] [4] [5] [8]) if for every pair of distinct points x and y, whenever x has a nhd. not 

containing y, then y has a nhd. not containing x.  

Throughout this paper, (X, τ) will denote the topological space. If � is an ideal on X, then (X, τ, �) is known as 

ideal topological space. By a open subset of X, we always mean open subset in the topological space (X, τ). For a 

subset A of X, cl(A) and cl
*
(A) denote the closure of A in (X, τ) and (X, τ

*
) respectively and A

C
 will denote the 

complement of A in X. 

         

3. S1 MOD ���� SPACES: 

Definition 3.1. An ideal space (X,τ, �) is said to be S1 mod ���� if for every pair of distinct points x and y in X, 

whenever x has a τ- open subset not containing y, y has a τ
*
 – open subset not containing x. 

Every S1 space is S1 mod �, since � ∈ �. Also it can be seen easily that (X, τ∗ ) is S1 implies (X,τ, �) is S1 mod �. 

But the converse is not true as can be seen from the following examples. 

Example 3.1.  Let X={a,b,c}, τ={�, {a}, {b}, {a,b}, X} and �={ �,{a},{b},{a,b}}. So τ∗
 
= ℘(X). Then X is S1 

mod � obviously, but not S1. Since a has a open subset not containing c but c has no open subset not containing a. 

Example 3.2.  Let X={a,b,c}, τ={�, {a}, {b,c}, X} and �={ �, {c}}. So τ∗
 
={�, {a}, {b}, {a,b}, {b,c}, X} . Then 

X is S1 and hence also S1 mod �. But (X, τ
*
) is not S1. Since b has a τ

*
-open subset not containing c but c has no τ

*
-

open subset not containing b. 

Remark 3.1.  From Example 3.1 it can be easily checked that (X, τ
*
) is S1 but (X,τ) is not S1. Also Example 3.2 

shows that (X,τ) is S1 but (X, τ
*
) is not S1.  

Therefore, the relationship of this separation axiom with respect to topological spaces can be seen below. 

a) (X, τ) is S1    ⇒⇒⇒⇒    (X,τ, ����) is S1 mod ����    ⇏⇏⇏⇏    (X, τ) is S1.            

b) (X, τ
*
) is S1    ⇒⇒⇒⇒    (X,τ, ����) is S1 mod ����    ⇏⇏⇏⇏    (X, τ

*
) is S1.      

c) (X, τ) is S1    ⇎⇎⇎⇎    (X, τ
*
) is S1. 

Theorem 3.1.  If an ideal space (X,τ, �) is S1 mod � and � ⊂ ℐ, where ℐ is an ideal. Then (X,τ, ℐ) is S1 mod ℐ. 

Proof.  Follows from the fact that if � ⊂ ℐ then τ
*
(�) ⊂ τ

*
(ℐ). 

The following theorem shows that subspace of S1 mod � space is S1 mod �. 

Theorem 3.2.  Let (X,τ, �) be S1 mod � space and A ⊂ X. Then (A, τA, �A) is also S1 mod � space. 

Proof.  Let x and y be two distinct points of A such that x has a τA -open subset G not containing y. So G = U∩A, 

where U is open subset of X containing x but not y. Therefore, (X,τ,�) is S1 mod � implies that there exists τ
*
-open 

subset V containing y but not x and so V∩A is (τA)
*
-open subset containing y but not x. Hence  (A, τA, �A) is S1 

mod �. 

Further we will give various characterizations of S1 mod � spaces. The following theorem characterize S1 mod � 

space in terms of τ
*
-closed sets.   
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Theorem 3.3.  Let (X,τ,�)  be an ideal space. Then the following are equivalent: 

a) (X,τ,�) is S1 mod �. 

b) If x ∈ cl
*
{y}, then y ∈ cl{x}. 

c) If G ∈ τ and x ∈ G, then cl
*
{x} ⊂ G i.e. every open subset is a union of τ

*
-closed sets. 

Proof.  (a)⇒(b): Obvious from the definition of S1 mod �. 

(b)⇒(c): Let G be open subset of X and y ∈ cl
*
{x} for some x ∈ G. Then (b) implies x ∈ cl{y}. This implies that 

every open subset containing x also contains y, so y ∈ G. Therefore cl
*
{x} ⊂ G. Hence (c) holds. 

(c)⇒(a): Let U be an open subset and x ∈ U. If y ∉ U, then by (c) cl
*
{x} ⊂ U implies y ∉ cl

*
{x}. This implies that y 

has a τ
*
-open subset not containing x. Hence (a) holds.     

Corollary 3.1.  An ideal space (X,τ,�) is S1 mod � if and only if any subset A of X is a union of τ
*
-closed sets, 

whenever A
C
 is union of closed sets. 

Proof.  Proof is obvious and hence is omitted. 

The following theorem characterize S1 mod � space in terms of closure of a point in given topology and its *-

topology. 

Theorem 3.4.  Let (X,τ,�) be an ideal space. Then the following are equivalent: 

a) (X,τ,�) is S1 mod �. 

b)  For any distinct points x,y of X, either cl{x}=cl{y} or cl
*
{x}∩cl{y}=� or cl{x}∩cl

*
{y}=�. 

Proof.  (a)⇒(b): Let x,y be two distinct points of X such that cl{x}≠cl{y}. So either x ∉ cl{y} or y ∉cl{x}. Let x ∉ 

cl{y}, so x ∈ (cl{y})
C
. Since (cl{y})

C
 is open subset of X, so by the equivalence of (a) and (c) of Theorem 3.3, we 

have cl
*
{x} ⊂ (cl{y})

C
. Therefore, cl

*
{x}∩cl{y}=�. Also y ∉ cl{x} implies cl{x}∩cl

*
{y}=�. Hence (b) holds. 

(b)⇒(a): Let U be open subset of X and x ∈ U. Let y ∈ cl
*
{x}-{x}, then by (b), cl{x}=cl{y}. This implies that every 

open subset containing x also contains y, so y ∈ U. Therefore, cl
*
{x} ⊂ U. Hence (a) holds by Theorem 3.3.      

Theorem 3.5.  Let (X,τ,�) be an ideal space. Then the following are equivalent: 

a) (X,τ,�) is S1 mod �. 

b) For any x ∈ X, cl
*
{x} ⊂ ker{x}. 

c) Any closed set F in X expressed as F = ∩ { G: F⊂ G , G is τ
*
-open}. 

d) Any open  set G in X expressed as G = ∪ { F: F⊂ G , F is τ
*
- closed}. 

e) For any non-empty set A and open subset G in X such that A∩G≠� there exists a τ
*
- closed set F such that 

A∩F≠∅ and F⊂G. 

f) For any closed set F in X, x ∉ F implies F ∩ cl
*
{x}=�. 

Proof.  (a)⇒(b): Let y ∈ cl
*
{x}, then by using the equivalence of (a) and (b) of Theorem 3.3, we have x ∈ cl{y}. 

This implies that every open subset containing x also contains y. So y ∈ Ker{x}. Hence (b) holds. 

(b)⇒(c): Let F be any closed set in X. Then obviously F⊂ ∩{G: F⊂G and G is τ
*
-open}. Conversely, let x ∉ F, so 

x∈ F
C
 and so Ker{x} ⊂ F

C
. Therefore, by (b), we have cl

*
{x} ⊂ Ker{x} ⊂ F

C
. This implies that F ⊂ (cl

*
{x})

C
. 

Since, (cl
*
{x})

C
 is τ

*
-open such that F ⊂ (cl

*
{x})

C
 and x ∉ (cl

*
{x})

C
. Therefore, x ∉ ∩ { G: F⊂ G , G is τ

*
-open}. 

Hence (c) holds. 

(c) ⇒(d): is obvious. 

(d) ⇒(e): Let A be non-empty subset and G is open subset of X such that A∩G ≠�. Then by (d), A∩G= A∩(∪{ F: 

F⊂ G , F is τ
*
- closed})= ∪{A∩F : F⊂ G , F is τ

*
- closed} ≠�. Therefore, there exists τ

*
-closed set F such that F ⊂ 

G and A ∩ F ≠�. Hence (e) holds. 

(e) ⇒(f): Let F be any closed set in X and x ∈ X such that x ∉ F. So x ∈ F
C
 and so {x} ∩ F

C
 ≠ �. Therefore by (e), 

there exists τ
*
-closed set W such that  
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{x} ∩ W ≠ � and W ⊂ F
C
. So x ∈ W and W is τ

*
-closed implies cl

*
{x} ⊂ W and so F ⊂ (cl

*
{x})

C
. Hence cl

*
{x} ∩ 

F =�. Hence (f) holds. 

(f) ⇒(a): Let x, y be two distinct points of X and U be open subset in X containing x but not y. So x ∉ U
C
 and U

C
 is 

closed in X and so by (f), cl
*
{x}∩U

C
 = �. Therefore, cl

*
{x} ⊂ U implies that y ∉ cl

*
{x}. Hence there exists τ

*
-open 

subset G of y not containing x. Hence (a) holds. 

The following theorem gives the characterization of S1 mod � space in terms of convergence of a filter. 

Theorem 3.6.  Let (X,τ,�) be an ideal space. Then the following are equivalent: 

a) (X,τ,�) is S1 mod �. 

b)  If x, y ∈ X, then y ∈ cl
*
{x} implies for all filter ℱ, ℱ→y implies ℱ→x. 

c)  For any x, y ∈ X, y ∈ cl
*
{x} implies cl{x}=cl{y}.   

Proof.  (a) ⇒(b): Let x, y ∈ X such that y ∈ cl
*
{x}, then by the equivalence of (a) and (b) of Theorem 3.3, x ∈ 

cl{y}. Now, consider a filter ℱ such that ℱ→y. So every open subset containing y is a member of ℱ. But x ∈ cl{y} 

implies every open subset containing x also contains y. Therefore, every open subset containing x also a member of 

ℱ. Hence ℱ→x. 

(b) ⇒(c): Let x, y ∈ X such that y ∈ cl
*
{x} and consider the nhd. filter �y. So �y → y. Therefore, by (b) �y → x. 

This implies that every open subset containing x is a member of �y , so every open subset containing x also 

contains y and so x ∈ cl{y}. Also y ∈ cl
*
{x} ⊂ cl{x}. Hence cl{x}=cl{y}.  

(c) ⇒(a): follows from Theorem 3.3. 

    

The Example below shows that the reverse implication does not hold in Theorem 3.5(b) and Theorem 3.6(b), (c). 

Example 3.3.  Let X={a,b,c}, τ={�, {a}, X} and �={ �, {a}, {b}, {a,b} }. So τ∗
 
={�, {a}, {c}, {a,c}, {b,c}, X}. 

Then Ker{c} = X, but cl
*
{c}={b,c}. So Ker{c} ⊄ cl

*
{c}. 

Also cl{b}=cl{c}, but c ∉ cl
*
{b}. And for any filter ℱ, ℱ→c as well as ℱ→b, since X is the only open subset 

containing b and c. Therefore for all filter ℱ, ℱ→c implies ℱ→b, but c ∉ cl
*
{b}. 

 

4. S2 MOD ���� SPACES: 

Definition 4.1.  An ideal space (X,τ, �) is said to be S2 mod ���� if for every pair of distinct points x and y in X, 

whenever x has a τ- open subset not containing y, there exist open nhds. U and V such that x ∈ U, y ∈ V and U ∩ V 

∈ �. 

Theorem 4.1.  Every S2 mod � space is S1 mod �. 

Proof.  Let (X,τ,�) be an ideal space and x,y be two distinct elements of X such x has a open subset not containing 

y. Then X is S2 mod � implies there exist open nhds. U and V such that x ∈ U, y ∈ V and U ∩ V ∈ �. Now if x ∉ 

V then y has a open subset V( and hence τ∗-open) not containing x. And if x ∈ V, then U ∩ V ∈ � implies {x} ∈ �. 

Therefore, V-{x} is the required τ∗-open subset containing y but not x. Hence X is S1 mod �. 

It can be seen easily that every S2 space is S2 mod �, since � ∈ �, but the converse is not true as can be seen from 

the example below: 

Example 4.1.  Let X={a,b,c}, τ={�, {a}, X} and �={ �, {a} }. Then X is S2 mod   but not S2. 

Theorem 4.2.  Let (X,τ,�) be an ideal space and � is codense, then X is S2 if and only if X is S2 mod  �. 

Proof.  Proof follows from the fact that � is codense implies τ
 
∩ �=�. So for any open nhds. U and V in X, U ∩ V 

∈ � implies U ∩ V = �. 
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Theorem 4.3.  Let (X,τ,�) be an ideal space , then (X, τ∗) is S2 implies (X,τ,�) is S2 mod  �. 

Proof.  Let x, y be two distinct elements of X such that x has a open subset U not containing y. Then (X, τ∗) is S2 

implies there exist disjoint τ∗-open nhds. G and H such that x ∈ G and y ∈ H. So there exist open subsets V and W 

and I1, I2 ∈ I such that x ∈ V- I1 ⊂ G and y ∈ W-I2 ⊂ H. Therefore, (V∩W)-( I1∪I2) = (V-I1)∩(W-I2) ⊂ G ∩ H = �, 

which implies that V ∩ W = I1 ∪ I2 , so V ∩ W ∈ �, since I1 ∪ I2 ∈ �. Hence (X,τ,�) is S2 mod  � . 

The following example shows that the converse of above theorem need not be true. 

Example 4.2.  Let X={a,b,c}, τ={�, {a}, {b,c}, X} and �={ �, {c}}. So τ∗
 
={�, {a}, {b}, {a,b}, {b,c}, X}. Then 

(X,τ,�) is S2 mod  �, but (X, τ∗) is not S2. Since b has a τ∗-open subset {a,b} not containing c, but there does not 

exist any disjoint τ∗-open subsets containing b and c. 

Remark 4.1.  From Example 4.1 it can be easily checked that (X, τ
*
) is S2 but (X,τ) is not S2. Also Example 4.2 

shows that (X,τ) is S2 but (X, τ
*
) is not S2.  

Therefore, the relationship of this separation axiom with respect to topological spaces can be seen below. 

a) (X, τ) is S2    ⇒⇒⇒⇒    (X,τ, ����) is S2 mod ����    ⇏⇏⇏⇏    (X, τ) is S2.            

b) (X, τ
*
) is S2   ⇒⇒⇒⇒    (X,τ, ����) is S2 mod ����    ⇏⇏⇏⇏    (X, τ

*
) is S2.      

c) (X, τ) is S2    ⇎⇎⇎⇎    (X, τ
*
) is S2. 

Theorem 4.4.  If an ideal space (X,τ, �) is S2 mod � and � ⊂ ℐ, where ℐ is an ideal. Then (X,τ, ℐ) is S2 mod ℐ. 

Proof.  Proof is obvious and hence is omitted. 

Theorem 4.5.  Let (X,τ, �) be S2 mod � space and A ⊂ X. Then (A, τA, �A) is also S2 mod � space. 

Proof.  Proof is obvious and hence is omitted. 

Theorem 4.6.  Every finite S1 mod � space is S2 mod �. 

Proof: Let (X,τ,�) be S1 mod � space, where X is finite. Let x, y ∈ X and G be open subset in X such that x ∈ G 

and y ∉ G. Therefore, by the equivalence of (a) and (c) of Theorem 3.3, we have cl
*
{x} ⊂ G, so G = ∪{ cl

*
{x} : x ∈ 

G} and so G is τ∗-closed, since X is finite. Hence there exist open subset G and τ∗-open subset G
C
 such that x ∈ G, y 

∈ G
C
 and G ∩ G

C
 = �. Hence (X,τ,�) is S2 mod  �  space.  

The following example shows that if X is not finite then S1 mod � space  need not be S2 mod  �. 

Example 4.3.  Let X is set of real numbers and τ={ G ⊂ X : G
C
 is finite}. Take � = {�}. Then X is S1 mod �, but 

not S2 mod �, since X has no disjoint open subsets. 

Further we will give various characterizations of S2 mod � spaces. 

Theorem 4.7.  An ideal space (X,τ,�) is S2 mod � if and only if for each x, y ∈ X, one of the following holds: 

a) cl{x} = cl{y}. 

b) there exist open subsets U and V, x ∈ U, y ∈ V, U ∩ V ∈ �.  

Proof.  Proof is obvious and hence is omitted.     

Further we will give characterization of S2 mod � space in terms of convergence of a filter with respect to an ideal. 

Before this firstly, we will define the convergence of filter with respect to an ideal. 

Definition 4.2.  Let (X,τ,�) be ideal space. Consider the filter ℱ on X such that ℱ∩�=�. For any x ∈ X, ℱ is said 

to be convergent  to x with respect to an ideal (written as ����- convergence) if for every open subset U of x there 

exists a member F of ℱ such that F-U ∈ �. By �-lim ℱ, we mean the collection of points to which ℱ converges 

with respect to an ideal. 

Theorem 4.8.  An ideal space (X,τ,�) is S2 mod  �  if and only if for x, y ∈ X, cl{x}=cl{y} whenever there is a 

filter ℱ not containing the members of � such that x, y ∈ �-lim ℱ. 

Proof.  Let (X,τ,�) be S2 mod  �  space and x,y ∈ X. Let ℱ be a filter such that ℱ ∩ � = � and x, y ∈ �-lim ℱ. If 

cl{x} ≠ cl{y}, then by Theorem 4.7, there exist subsets U and V such that x ∈ U , y ∈ V and U ∩ V ∈ �. Since x, y 
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∈ �-lim ℱ, so there exist F ∈ ℱ such that F-U ∈ � and F-V ∈ � and so F- (U ∩ V) ∈ �. Therefore, F ∈ �, 

contradicting ℱ ∩ � = �. Thus cl{x} = cl{y}. 

Conversely, suppose there does not exist any open subsets U and V such that x ∈ U , y ∈ V and U ∩ V ∈ �. Thus 

we can define a filterbase ℱ(B)={ U ∩ V : x ∈ U and y ∈ V} and let ℱ be filter generated by ℱ(B). Then x, y ∈ �-

lim ℱ and thus cl{x}=cl{y}. Hence by Theorem 4.7, (X,τ,�) is S2 mod  �. 

Next result characterizes S2 mod � space in terms of Kernel of points. 

Theorem 4.9.  An ideal space (X,τ,�) is S2 mod  � if and only if for x, y ∈ X such that Ker{x} ≠ Ker{y}, there 

exist open subsets U and V such that x ∈ U, y ∈ V and U ∩ V ∈ �. In fact, the sets U and V are such that Ker{x} ⊂ 

U, Ker{y} ⊂ V. 

Proof.  Proof is obvious and hence is omitted.  

 

REFERENCES 

1. A. Csàszàr, General Topology, A. Hilger Ltd., Bristol, 1978. 

2. A.S. Davis, “Indexed systems of neighbourhoods for general topological spaces”, Amer. Math. Monthly, 68(1961), 886-

893. 

3. J. Dontchev, M. Ganster and D. Rose, Ideal Resolvability, Topology and its Applications, 93(1)(1999), 1-16. 

4. C. Dorsett, R0 and R1 topological spaces, Mat. Vesnik, 2(15)(30)(1978), 117-122. 

5. W. Dunham, Weakly Hausdorff Spaces, Kyungpook Mathematical Journal, 15(1975), 41-50. 

6. D. Janković and T.R. Hamlett, New topologies from old via ideals, The American Mathematical Monthly 97(4) (1990) 

295-310. 

7. K. Kuratowski, Topology, volume I, Academic Press,New York, 1966. 

8. N. A. Shanin, “On separation in topological spaces”, Dokl. Akad. Nauk. SSSR, 38(1943), 110-113. 

9. R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci.,20(1945),51-61.  

10. Set Topology, Chelsea Publishing Company, New York,1946.  



-45- 

 

 

 

RELIABILITY AND PROFIT ANALYSIS OF A SYSTEM WITH 

INSTRUCTION, REPLACEMENT AND TWO OF THE THREE  

TYPES OF REPAIR POLICY 
 

Rashmi Gupta 
Dept. of Mathematics, Vaish College of Engineering, Rohtak (Haryana) 

E-mail : rgupta2450@gmail.com 

 

ABSTRACT : 

The present paper introduces the instruction time and the possibility that ordinary repairman may damage the 

unit to the extent that : (i) it rather goes to more degraded stage but repairable (ii) it may become irreparable and 

hence replaced.  Two-unit cold standby system is examined and two has  been analyzed by making use of Semi-

Markov Processes and regenerative point technique. Various measures of system effectiveness including profit 

incurred have been evaluated. Various conclusions have been drawn through graphical study for a particular 

case. 

 

INTRODUCTION 

 In order to increase the reliability, concept of redundancy is used by the users of various systems. As a result, 

two-unit standby systems have widely been studied in the field of reliability. Concept of two types of repairman has 

been considered in some of these studies including [3-6] wherein one of the repairman had been taken as an 

ordinary and the other as an expert.  The ordinary repairman may not be able to do some complex repairs and then 

an expert comes. Long stay of the expert with the system may be costly and hence idea of instruction time was 

introduced by Kumar et al. [7].  

  There may also be situations when the ordinary repairman even after getting the instruction may damage the 

failed unit during his try for repair.  This leads to the unit in more degraded stage and sometimes to a stage where 

we are left with no other option but to replace it by a new one.  

The purpose of the present study is :  

(i)  to introduce redundancy  

(ii)  to introduce a new type of repair policy which is defined as : “when the ordinary repairman makes the unit 

damaged and leads it to more degraded stage due to mishandling, it is undertaken by the expert at much 

earlier stage than the stage at which its repair has been started by the ordinary repairman”  

(iii)  to make the replacement when the failed unit is made no more repairable by the ordinary repairman  

(iv)  to reduce the stay of the expert. 

 The present paper, therefore, investigates two-unit cold standby system introducing the aforesaid repair policy 

together with instruction and replacement. It is assumed that if at the time of completion of the repair of a failed 

unit by the expert, the second unit is found in failed state, it is also repaired by the expert.  Other assumptions are as 

usual. The system has been analyzed by making use of Semi-Markov Processes and regenerative point technique. 
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Various measures of system effectiveness including profit incurred have been evaluated. Various conclusions have 

been drawn through graphical study for a particular case. 

 

NOTATIONS  

λ  : constant failure rate of a unit 

1
p   : probability that the ordinary repairman is able to complete the repair 

1
q   : probability that the ordinary repairman is unable to complete the repair 

a  : probability that resume repair policy is adopted 

b2  : probability that unit is damaged but repairable 

b3  : probability that the unit is damaged but irreparable 

g(t), G(t) : p.d.f. and c.d.f. of the repair time of the ordinary repairman 

g1(t) G1(t) : p.d.f. and c.d.f. of repair time of the expert repairman when resume repair policy is adopted 

g2(t), G2(t) : p.d.f. and c.d.f. of repair time of the expert repairman when repeat repair policy (type-I) is adopted 

g3(t), G3(t) : p.d.f. and c.d.f. of repair time of the expert repairman when repeat repair policy (type-II) is adopted  

g4(t), G4(t) : p.d.f. and c.d.f. of replacement time 

i(t), I(t) : p.d.f. and c.d.f. of time when expert gives instruction to ordinary repairman 

 

Symbols for the state of system are : 

o  : operative unit 

cs  : cold standby unit 

Fr  : failed unit under repair of ordinary repairman 

FR  : repair of the failed unit by the ordinary repairman is continuing from previous state 

1reF   : failed unit under repair of the expert repairman when resume repair policy is adopted 

1ReF  : repair of the failed unit by the expert repairman is continuing from the previous state under resume 

repair policy 

2reF  : failed unit under repair of the expert repairman when repeat repair policy (type-I) is adopted 

2ReF  : repair of the failed unit by the expert repairman is continuing from the previous state under repeat 

repair policy (type-I) 

3reF  : failed unit under repair of the expert repairman when repeat repair policy (type-II) is adopted 

3ReF  : repair of the failed unit by the expert repairman is continuing from the previous state under repeat 

repair policy (type-II) 

Frep  : failed unit under replacement 

FRep  : replacement of the failed unit continuing from the previous state 

Fei  : failed unit under instructions given by expert repairman to the ordinary repairman  
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Transition Probabilities and Mean Sojourn Times 

 The transition diagram showing the various states of the system is shown as in  Fig. 1. The epochs of entry 

into states 0, 1, 2, 3, 4, 5, 10, 11, 12 and 13 are regeneration points and thus these states are regenerative states.  

States 6, 7, 8, 9, 10, 11, 12 and 14 are failed states.  

 The non-zero elements pij = 
0s

lim
→

qij*(s) are : 

 p01 = p12 = 1  ; p20 = p1g*(λ)  ; p23 = q1ag*(λ) 

 p24 = q1b2g*(λ)  ; p25 = q1b3g*(λ)  ; p26 = 1 − g*(λ) 

 
)6(

21p  = p1(1 − g*(λ))  ; 
)6(

10,2p  = q1a(1 − g*(λ))  ; 
)6(

11,2p  = q1b2(1−g*(λ)) 

 

 
)6(

12,2p  = q1b3(1 − g*(λ))  ; p30 = g1*(λ)  ;        p37 = 
)7(

13,3p = 1−g1*(λ) 

 p40 = g3*(λ)  ; p48 = 
)8(

13,4p  = 1 − g3*(λ) 

 

 

 

Fig. 1 

Up-state 

Failed state 

Regeneration point 
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 p50 = g4*(λ)   ; p59 = 
)9(

13,5p  = 1 − g4*(λ) 

 p10,13 = p11,13 = p12,13 = 1 

 p13,0 = g2*(λ)    ; p13,14 = 
)14(

13,13p  = 1 − g2*(λ)   …(1-19) 

 By these transition probabilities, it can be verified that 

 p01 = p12 = p10,13 = p11,13 = p12,13 = 1 

 p20 + p23 + p24 + p25 + p26 = 1 

 p20+ p23 + p24 + p25 + 
)6(

21p  + 
)6(

12,2

)6(

11,2

)6(

10,2 ppp ++  = 1 

 p30 + p37 = p30 + 
)7(

13,3p  = 1 

 p40 + p48 = p40 + 
)8(

13,4p  = 1 

 p50 + p59 = p50 + 
)9(

13,5p  = 1 

 p13,0 + p13,14 = p13,0 + 
)14(

13,13p  = 1        …(20-26) 

  The mean sojourn time (µi) in state i are : 

 µ0 = 
λ

1
,  µ1 = − i*′(0),  µ2 = 

λ

λ− )(*g1
 

 µ3 = 
λ

λ− )(*g1 1 , µ4 = 
λ

λ− )(*g1 3 , µ5 = 
λ

λ− )(*g1 4  

 µ10 = −g1*′(0),  µ11 = −g3*′(0),  µ12 = −g4*′(0) 

 µ13 = 
λ

λ− )(*g1 2          …(27-36) 

 The unconditional mean time taken by the system to transit for any state j when it is counted from epoch of 

entrance into state i is mathematically stated as  

  mij = ∫
∞

0

ij dt)t(tq  = −qij*′(0)       …(37) 

Thus, 

 m01 = µ0  ; m12 = µ1 

 m20 + m23 + m24 + m25 + m26 = µ2 

m20 + m23 + m24 + m25 + 
)6(

12,2

)6(

11,2

)6(

10,2

)6(

21 mmmm +++  = k1 (say) 

m30 + m37 = µ3  ; m30 + 
)7(

13,3m  = µ10 

m40 + m48 = µ4  ; m40 + 
)8(

13,4m  = µ11 

m50 + m59 = µ5  ; m50 + 
)9(

13,5m  = µ12 

m10,13 = µ10  ; m11,13 = µ11 ; m12,13 = µ12 

m13,0 + m13,14 = µ13 ; m13,0 + 
)14(

13,13m  = k2 (say)     …(38-52) 

 

MEAN TIME TO SYSTEM FAILURE 

 By probabilistic arguments, we obtain the following recursive relations for φi(t):  

 φ0(t) = Q01(t)  φ1(t) 

 φ1(t) = Q12(t)  φ2(t) 
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 φ2(t) = Q20(t)  φ0(t) + Q23(t)  φ3(t) + Q24(t)  φ4(t)  

        + Q25(t)  φ5(t) + Q26(t) 

 φ3(t) = Q30(t)  φ0(t) + Q37(t) 

 φ4(t) = Q40(t)  φ0(t) + Q48(t) 

 φ5(t) = Q50(t)  φ0(t) + Q59(t) 

 φ13(t) = Q13,0(t)  φ0(t) + Q13,14(t)        …(53-59) 

 Taking Laplace-Steiltjes Transforms (L.S.T.) of these relations and solving then for φ0**(s), the mean time 

to system failure (MTSF) when the system starts from the state ‘0’ is 

  T0 = 
s

)s*(*1
lim 0

0s

φ−

→

 = 
D

N
       …(60) 

where 

  N = µ0 + µ1 + µ2 + p23 µ3 + p24 µ4 + p25 µ5 

 D = 1 − p20 − p23 p30 − p24 p40 − p25 p50       …(61-62) 

 

 

AVAILABILITY ANALYSIS 

 Using the arguments of the theory of regenerative processes, the availability Ai(t) is seen to satisfy the 

following recursive relations : 

 A0(t) = M0(t) + q01(t) © A1(t) 

 A1(t) = M1(t) + q12(t) © A2(t) 

 A2(t) = M2(t) + q20 (t) © A0(t) + q23(t) © A3(t) + q24(t) © A4(t) 

   + q25(t) © A5(t) + 
)6(

21
q (t) © A1(t) + 

)6(

10,2
q (t) © A10(t) 

   + 
)6(

11,2
q (t) © A11(t) + 

)6(

12,2
q (t) © A12(t) 

 A3(t) = M3(t) + q30(t) © A0(t) + 
)7(

13,3
q (t) © A13(t) 

 A4(t) = M4(t) + q40(t) © A0(t) + 
)8(

13,4
q (t) © A13(t) 

 A5(t) = M5(t) + q50(t) © A0(t) + 
)9(

13,5
q (t) © A13(t) 

 A10(t) = q10,13(t) © A13(t) 

 A11(t) = q11,13(t) © A13(t) 

 A12(t) = q12,13(t) © A13(t) 

 A13(t) = M13(t) + q13,0(t) © A0(t) + 
)14(

13,13q (t) © A13(t)     …(63-72) 

where 

 M0(t) = e
−λt

  ; M1(t) = )t(I   ; M2(t) e
−λt

 )t(G  

 M3(t) = e
−λt

 )t(G1  ; M4(t) = e
−λt

 )t(G3  ; M5(t)= e
−λt

 )t(G4  

 M13(t) = e
−λt

 )t(G2        …(73-79) 

 Taking Laplace transforms of the above equations and solving them for A0*(s), in steady-state, the 

availability of the system is given by 

  A0 = 
1

1
0

0s D

N
))s*(*As(lim =

→

       …(80) 
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where 

 N1 = [µ0(1 − 
)6(

21p ) + µ1 + µ2 + p23µ3 + p24µ4 + p25µ5]p13,0 

   + µ13[p23 
)7(

13,3p  + p24 
)8(

13,4p  + p25 
)9(

13,5p  + 
)6(

10,2p  + 
)6(

11,2p  + 
)6(

12,2p ] 

 D1 = [µ0(1 − 
)6(

21
p ) + µ1 + k1 + µ10(p23 + 

)6(

10,2p ) + µ11(p24 + 
)6(

11,2p ) 

   + µ12(p25 + 
)6(

12,2p )] p13,0 + µ13 [p23 
)6(

13,3p  + p24 
)8(

13,4p  + p25 
)9(

13,5p  

   + 
)6(

12,2

)6(

11,2

)6(

10,2 ppp ++ ]       …(81-82) 

 

BUSY PERIOD ANALYSIS OF THE ORDINARY REPAIRMAN 

 By probabilistic arguments, we have the following recursive relations for Bi(t) : 

 B0(t) = q01(t) © B1(t) 

 B1(t) = q12(t) © B2(t) 

 B2(t) = W2(t) + q20(t) © B0(t) + 
)6(

21
q (t) © B1(t) + q23(t) © B3(t) 

   + q24(t) © B4(t) + q25(t) © B5(t) + 
)6(

10,2q (t) © B10(t) 

   + 
)6(

11,2
q (t) © B11(t) + 

)6(

12.2q  (t) © B12(t) 

 B3(t) = q30(t) © B0(t) + 
)7(

13,3q  (t) © B13(t) 

 B4(t) = q40(t) © B0(t) + 
)8(

13,4q (t) © B13(t) 

 B5(t) = q50(t) © B0(t) + 
)9(

13,5q (t) © B13(t)  

 B10(t) = q10,13(t) © B13(t) 

 B11(t) = q11,13(t) © B13(t) 

 B12(t) = q12,13(t) © B13(t) 

 B13(t) = q13,0(t) © B0(t) + 
)14(

13,13q (t) ©B13(t)      …(83-91) 

where 

  W2(t) = )t(G          …(92) 

 Taking L.T. of the above equations and solving them for B0*(s), in steady-state, the total fraction of the 

time for which the system is under repair of the ordinary repairman is given by 

  B0 = 
1

2
0

0s D

N
))s(*Bs(lim =

→

       …(93) 

where 

  N2 = k1 p13, 0         …(94) 

and D1 is already specified. 

BUSY PERIOD ANALYSIS OF THE EXPERT REPAIRMAN(REPAIR TIME ONLY) 

 By probabilistic arguments, we have the following recursive relations for 
e

iB (t) : 

 
e

0B (t) = q01(t) © 
e

1B (t) 

 
e

1B (t) = q12(t) © 
e

2B (t) 

 
e

2B (t) = q20(t) © 
e

0B (t) + 
)6(

21q (t) © 
e

1B (t) + q23(t) © 
e

3B (t) + q24(t) © 
e

4B (t)  

   + q25(t) © 
e

5B (t) + 
)6(

10,2q (t) © 
e

10B (t) + 
)6(

11,2q (t) © 
e

11B (t) 
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   + 
)6(

12,2
q (t) © 

e

12B (t) 

 
e

3B (t) = W3(t) + q30(t) © 
e

0B (t) + 
)7(

13,3q (t) © 
e

13B (t) 

 
e

4B (t) = W4(t) + q40(t) © 
e

0B (t) + 
)8(

13,4q (t) © 
e

13B (t) 

 
e

5B (t) = q50(t) © 
e

0B (t) + 
)9(

13,5q (t) © 
e

13B (t) 

 
e

10B (t) = W10(t) + q10,13(t) © 
e

13B (t) 

 
e

11B (t) = W11(t) + q11,13(t) © 
e

13B (t) 

 
e

12B (t) = q12,13(t) © 
e

13B (t) 

 
e

13B (t) = W13(t) + q13,0(t) © 
e

0B (t) + 
)14(

13,13q (t) © 
e

13B (t)     …(95-104) 

where 

  W3(t) = W10(t) = )t(G1  

  W4(t) = W11(t) = )t(G3  

  W13(t) = )t(G2          …(105-107) 

 Taking L.T. of the above equations and solving them for 
e

0B *(s), in steady-state, the total fraction of the 

time for which the system is under repair of the expert repairman is given by  

  
e

0B  = 
1

3e

0
0s D

N
))s(*Bs(lim =

→

       …(108) 

where 

N3 = µ10(p23 + 
)6(

10,2p ) + µ11(p24 + 
)6(

11,2p )  

  + k2[p23 
)7(

13,3p  + p24 
)8(

13,4p + p25 
)9(

13,5p  + 
)6(

10,2p  + 
)6(

11,2p  + 
)6(

12,2p ]    …(109) 

and D1 is already specified. 

 

EXPECTED INSTRUCTION TIME 

 By probabilistic arguments, we have the following recursive relations for ITi(t) : 

 IT0(t) = q01(t) © IT1(t) 

 IT1(t) = W1(t) + q12(t) © IT2(t) 

 IT2(t) = q20(t) © IT0(t) + 
)6(

21
q (t) © IT1(t) + q23(t) © IT3(t)  

   + q24(t) IT4(t) + q25(t) © IT5(t) + 
)6(

10,2q (t) © IT10(t) 

   + 
)6(

11,2q (t) © IT11(t) + 
)6(

12,2q (t) © IT12(t) 

 IT3(t) = q30(t) © IT0(t) + 
)7(

13,3q (t) © IT13(t)  

 IT4(t) = q40(t) © IT0(t) + 
)8(

13,4q (t) © IT13(t) 

 IT5(t) = q50(t) © IT0(t) + 
)9(

13,5q (t) © IT13(t) 

 IT10(t) = q10,13(t) © IT13(t) 

 IT11(t) = q11,13(t) © IT13(t) 

 IT12(t) = q12,13(t) © IT13(t) 

 IT13(t) = q13,0(t) © IT0(t) + 
)14(

13,13q (t) © IT13(t)      …(110-119) 

where 
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  W1(t) = )t(I          …(120) 

 Taking L.T. of the above equations and solving them for IT0*(s), in steady-state, the total fraction of the 

time for which the expert is busy in giving the instructions to the ordinary repairman is given by  

  IT0 = 
1

4
0

0s D

N
))s(*ITs(lim =

→

       …(121) 

where 

  N4 = µ1 p13,0         …(122) 

and D1 is already specified. 

 

EXPECTED NUMBER OF VISITS BY THE ORDINARY REPAIRMAN 

 By probabilistic arguments, we have the following recursive relations for Vi(t) : 

 V0(t) = Q01(t)  V1(t) 

 V1(t) = Q12(t)  [1 + V2(t)] 

 V2(t) = Q20(t)  V0(t) + 
)6(

21Q (t)  V1(t) + Q23(t)  V3(t)  

    + Q24(t)  V4(t) + Q25(t)  V5(t) + 
)6(

10,2Q (t)  V10(t) 

   + 
)6(

11,2Q (t)  V11(t) + 
)6(

12,2Q (t)  V12(t) 

 V3(t) = Q30(t)  V0(t) + 
)7(

13,3Q (t)  V13(t) 

 V4(t) = Q40(t)  V0(t) + 
)8(

13,4Q (t)  V13(t) 

 V5(t) = Q50(t)  V0(t) + 
)9(

13,5Q (t)  V13(t) 

 V10(t) = Q10,13(t)  V13(t) 

 V11(t) = Q11,13(t)  V13(t) 

 V12(t) = Q12,13(t)  V13(t) 

 V13(t) = Q13,0(t)  V0(t) + 
)14(

13,13Q (t)  V13(t)      …(123-132) 

 Taking L.S.T. of the above equations and solving them for V0**(s), in steady-state, the number of visits per 

unit time by the ordinary repairman is given by 
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  V0 = 





→∞ t

)t(V
lim 0

t
= )]s*(*sV[lim 0

0s→

 = 
1

5

D

N
     …(133) 

where 

  N5 = p13,0         …(134) 

and D1 is already specified. 

 

EXPECTED NUMBER OF VISITS BY THE EXPERT REPAIRMAN 

 By probabilistic arguments, we have the following recursive relations for 
e

iV (t) : 

 
e

0V (t) = Q01(t)  [1 + 
e

1V (t)] 

 
e

1V (t) = Q12(t)  
e

2V (t) 

 
e

2V (t) = Q20(t)  
e

0V (t) + Q23(t)  [1 + 
e

3V (t)] + Q24(t)  [1 + 
e

4V (t)] 

   + Q25(t)  
e

5V (t) + 
)6(

21Q (t)  [1 + 
e

1V (t)]  

    + 
)6(

10,2Q (t)  [1 + 
e

10V (t)] + 
)6(

11,2
Q (t)  [1 + 

e

11V (s)] 

   + 
)6(

12,2Q (t)  
e

12V (t) 

 
e

3V (t) = Q30(t)  
e

0V (t) + 
)7(

13,3Q (t)  
e

13V (t) 

 
e

4V (t) = Q40(t)  
e

0V (t) + 
)8(

13,4Q (t)  
e

13V (t) 

 
e

5V (t) = Q50(t)  
e

0V (t) + 
)9(

13,5Q (t)  
e

13V (t) 

  
e

10V (t) = Q10,13(t)  
e

13V (t) 

 
e

11V (t) = Q11,13(t)  
e

13V (t) 

 
e

12V (t) = Q12,13(t)  
e

13V (t) 

 
e

13V (t) = Q13,0(t)  
e

0V (t) + 
)14(

13,13Q (t)  
e

13V (t)     …(135-144) 

 Taking L.S.T. of the above equations and solving them for 
e

0V **(s), in steady-state, the number of visits 

per unit time by the expert is given by 

  
e

0V  = )]s*(*Vs[lim e

0
0s→

 = 
1

6

D

N
       …(145) 

Where 

 

  N6 = p13,0[1 + p23 + p24 + 
)6(

10,2p  + 
)6(

11,2p ]      …(146) 

and D1 is already specified. 

BUSY PERIOD ANALYSIS OF REPAIRMAN [REPLACEMENT TIME ONLY] 

 By probabilistic arguments, we have the following recursive relations for 
R

iB (t) :  

 
R

0B (t) = q01(t) © 
R

1B (t)  

 
R

1B (t) = q12(t) © 
R

2B (t) 

 
R

2B (t) = q20(t) © 
R

0B (t) + 
)6(

21q (t) © 
R

1B (t) + q23(t) © 
R

3B (t)  

    + q24 (t) © 
R

4B (t) + q25(t) © 
R

5B (t) + 
)6(

10,2q (t) © 
R

10B (t) 

   + 
)6(

11,2q (t) © 
R

11B (t) + 
)6(

12,2q (t) © 
R

12B (t) 
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R

3B (t) = q30(t) © 
R

0B (t) + 
)7(

13,3q (t) © 
R

13B (t) 

 
R

4B (t) = q40(t) © 
R

0B (t) + 
)8(

13,4q (t) © 
R

13B (t) 

 
R

5B (t) = W5(t) + q50(t) © 
R

0B (t) + 
)9(

13,5q (t) © 
R

13B (t)  

 
R

10B (t) = q10,13(t) © 
R

13B (t) 

 
R

11B (t) = q11,13(t) © 
R

13B (t) 

 
R

12B (t) = W12(t) + q12,13(t) © 
R

13B (t) 

 
R

13B (t) = q13,0(t) © 
R

0B (t) + 
)14(

13,13q (t) © 
R

13B (t)      …(147-156)  

where 

  W5(t) = W12(t) = )t(G4         …(157) 

 Taking L.T. of the above equations and solving them for 
R

0B *(s), in steady-state, the total fraction of the 

time for which the system is under replacement is given by  

  
R

0B  = ))s(*Bs(lim R

0
0s→

= 
1

7

D

N
       …(158) 

where 

  N7 = µ12(p25 + 
)6(

12,2
p ) p13,0       …(159) 

and D1 is already specified. 

 

EXPECTED NUMBER OF REPLACEMENTS  

 By probabilistic arguments, we have the following recursive relations for RPi(t) : 

 RP0(t) = Q01(t)  RP1(t) 

 RP1(t) = Q12(t)  RP2(t) 

 RP2(t) = Q20(t)  RP0(t) + Q23(t)  RP3(t) + Q24(t)  RP4(t) 

  + Q25(t)  [1 + RP5(t)] + 
)6(

21Q (t)  RP1(t)  + 
)6(

10,2Q (t)  RP10(t)  

  + 
)6(

11,2Q (t)  RP11(t) + 
)6(

12,2Q (t)  [1 + RP12(t)] 

 RP3(t) = Q30(t)  RP0(t) + 
)7(

13,3Q (t)  RP13(t) 

 RP4(t) = Q40(t)  RP0(t) + 
)8(

13,4Q (t)  RP13(t) 

 RP5(t) = Q50(t)  RP0(t) + 
)9(

13,5Q (t)  RP13(t) 

 RP10(t) = Q10,13(t)  RP13(t) 

 RP11(t) = Q11,13(t)  RP13(t) 

 RP12(t) = Q12,13(t)  RP13(t) 

 RP13(t) = Q13,0(t)  RP0(t) + 
)14(

13,13Q (t)  RP13(t)     …(160-169) 

 Taking L.S.T. of the above equations and solving them for RP0**(s), in steady-state, the total number of 

expected replacement is given by 

  RP0 = )s*(*RPs[lim 0
0s→

] = 
1

8

D

N
       …(170) 

where 
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  N8 = p13,0(p25 + 
)6(

12,2p )        …(171) 

and D1 is already specified. 

 

PROFIT ANALYSIS 

The expected total profit incurred to the system in steady-state is given by 

P = C0A0 − C1B0 − C2
e

0B  − C4V0 − C5
e

0V  − C6 
R

0B  − C7RP0 − C8IT0 …(172) 

where 

C0 =  revenue per unit up time of the system 

C1 =  cost per unit time for which the ordinary repairman is busy for repairing the failed unit 

C2 =  cost per unit time for which the expert repairman is busy for repairing the unit 

C4 =  cost per visit of the ordinary repairman  

C5 =  cost per visit of the expert repairman 

C6 =  cost per unit time for which the repairman is busy for replacing the unit 

C7 =  cost per replacement. 

C8 =  cost per unit time for which expert repairman is busy in giving the instruction to the ordinary repairman.  

 

PARTICULAR CASE 

For graphical interpretation, the following particular case is considered : 

   g(t) = αe
−αt

  ; g1(t) = α1 
t1e

α−

 

 g2(t) = α2 
t2e

α−

 ; g3(t) = α3 
t3e

α

 

 g4(t) = α4 
t4e

α−

 ; i(t) = γe
−γt

 

 

On the basis of the numerical values taken as : 

 p1 = 0.5, q1 = 0.5, a = 0.5, b2 = 0.45, b3 = 0.05, γ = 10, 

 α = 1, α1 = 2.5, α2 = 2, α3 = 1, α4 = 5, λ = 0.05 

The values of various measures of system effectiveness are obtained as : 

Mean time to system failure (MTSF) = 340.4345 

Availability (A0) = 0.9964026 

Busy period of the ordinary repairman (B0) = 0.0476797 

Busy period of the expert repairman (repair time only) (
e

0B ) = 0.0168343 

Expected instruction time (IT0) = 0.0047679 

Expected number of visits by the ordinary repairman (V0) = 0.047679 

Expected number of visits by the expert repairman (
e

0V ) = 0.0703276 

Busy period of the expert repairman(replacement time only)(
R

0B )= 0.000238399 

Expected number of replacements (RP0) = 0.00119199 

Graphical Interpretation 

 The above particular case is considered from the graphical interpretation. 

 Fig. 2 reveals the pattern of the profit with respect to failure rate (λ) for different values of repair rate (α).  

The profit decreases as the failure rate increases and is higher for higher values of repair rate (α).  Following 

inferences can be made through the graph : 
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 For α = 1, 1.5 and 2 ; the system is profitable only if λ < 0.103, 0.113 and 0.119 respectively.’ 

 

 

Fig. 2 

  So, the companies can be suggested to purchase only those systems which do note have failure rates greater 

than those mentioned above. 

 Fig. 3 depicts the behaviour of the profit with respect to revenue (C0) for different values of cost (C2).  The 

profit increases as C0 increases and becomes lower for higher values of cost (C2). Following is also observed from 

the graph : 

 For C2 = 4000, 5000 and 6000 the system is profitable only if C0 > 157.8, 174.7 and 191.6 respectively. 

 

Fig. 3 
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 Fig. 4 depicts the behaviour of the profit with respect to replacement cost (C7) for different values of repair 

rate (α4).  The profit decreases as the cost (C7) increases and is higher for higher values of repair rate (α4).  

Following is also observed from the graph :  

 For α4 = 1, 2 and 10, the system is profitable only if C7 < 4280.15, 4541.65 and 4749.4 accordingly. 

 

 

Fig. 4 

 Fig. 5 shows the behavior of the profit with respect to probability (p1) for different values of probability (a). 

The profit increases as p increases and is higher for higher values of probability (a). Following is also observed 

from the graph : 

 For a = 0.2, 0.4 and 0.6, the system is profitable only if p1 > 0.357, 0.326 and 0.271 respectively. 

 

Fig. 5 
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ABSTRACT : 

In this paper bipolar total fuzzy graph BT(G):(σ�� , μ�� ) of bipolar fuzzy graph G:( σ, µ)  is defined. Properties 

of bipolar total fuzzy Graph and the weak isomorphism between the bipolar subdivision fuzzy graph and bipolar 

total fuzzy graph, bipolar middle fuzzy graph and bipolar total fuzzy graph are discussed. 

Keywords : Bipolar subdivision fuzzy graph, Bipolar middle fuzzy graph ,isomorphism bipolar fuzzy graphs. 

 

1. INTRODUCTION 

Graph theory has numerous applications to problems in computer science, electrical engineering, system analysis, 

operations research, economics, networking routing, transportation etc. In 1965, Zadeh [8] introduced the notion of 

a fuzzy subset of a set. Since then, the theory of fuzzy sets has become a vigorous area of research in different 

disciplines including medical and life sciences, management sciences, social sciences, engineering, statistics, graph 

theory, artificial intelligence, expert systems, decision making and automata theory. In 1994, Zhang [9] initiated the 

concept of bipolar fuzzy sets as a generalization of fuzzy sets. A bipolar fuzzy set is an extension of Zadeh’s fuzzy 

set theory whose membership degree range in [-1, 1]. In this paper order, size of the nodes and edges of the bipolar 

total fuzzy graphs are discussed. weak isomorphism between bipolar subdivision fuzzy graph and bipolar total 

fuzzy graph, bipolar middle fuzzy graph and total fuzzy graph is proved.  

 

2. PRELIMINARIES 

In this section, we introduce some basic definitions that are required in the sequel. 

Definition: 2.1 

Let G:( σ, µ) be a fuzzy graph with its underlying set V and crisp graph �∗ :(�∗,µ∗) The pair T(G):( ��,µ � ) of G is 

defined as follows. Let the vertex set of T(G) be V∪E.  

The fuzzy subset  �� is defined on V∪E as 

                     �� (x)  =   σ(x) if x ∈ V 

                                 =    µ(e) if e ∈ E 

The fuzzy relation µ � is defined as 

                µ �(x, y)     = µ(x, y)                  if x, y ∈ V 

                 µ �(x e)     = σ(x) ˄ µ (e)          if x ∈ V, e ∈ E, and the node 

                                                                ‘x’ lies on the edge ‘e’. 

                                 =     0                      otherwise 

                µ �(�
,��)  = µ(�
)  ˄ µ(��)      if the edges �
 and �� have a node in  

                                                                common between them 

                               =      0                     otherwise 
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By the definition µ � (u, v) ≤  �� (u)  ˄  �� (v) for all u,v in V ∪ �.Hence µ � is a fuzzy relation on the fuzzy subset 

��. Hence the pair T(G): (��, µ �) is a fuzzy graph and is termed as total fuzzy graph of G. 

Definition: 2.2 

A bipolar fuzzy graph with an underlying set V is defined to be a pair G:( σ, µ), where σ= (�σ
�  ,��

�  ),                       

µ= (�µ
�  ,   �µ

�  ) and crisp graph �∗  :(�∗ ,µ∗ ). The pair BT(G):(σ��  , µ��  ) of G where σ�� = (�σ��
�  ,����

�  )                

,  
     
 µ ��

= (�µ��
�  ,�µ��

�  ) we call σ��  the bipolar total vertex set of V,   µ��  the bipolar fuzzy edge set of E 

respectively. The bipolar fuzzy subset σ�� is defined on V∪E as 

 σ��
� (x)   =   σ�(x)               if   x ∈ V 

              =   µ�(e)               if   e ∈ V 

 σ��
� (x)  =   σ�(x)              if   x ∈ V 

             =   µ�(e)              if   e  ∈ V        

        The bipolar fuzzy relation µ��is defined as 

µ��
� (x,y) = µ�(x,y)              if x,y ϵ V 

µ��
� (x,y) = µ�(x,y)              if x,y ϵ V 

                      µ��
� (x,e)  = �(x) ˄ µ(e)         if xϵV,eϵE and the vertex ‘x’ lies on the edge ‘e’ 

                                        =         0           otherwise 

                    µ��
� (x,e)   = �(x) ˅ µ(e)            if xϵV,eϵE and the vertex ‘x’ lies on the edge ‘e’ 

                                         =         0                   otherwise 

                        µ��
� (�
,��)  = µ(�
) ˄ µ(��)        if the edges �
 and �� have a node in  

                                                                           common between them 

                                           =         0                  otherwise 

                        µ��
� (�
,��) = µ(�
) ˅ µ(��)         if the edges �
 and �� have a node in  

                                                                           common between them 

                                          =         0                      otherwise 

By the definition µ��
� (x,y) ≤ ���

� (x) ˄ ���
� (y), µ��

� (x,y) ≥ ���
� (x) ˅ ���

� (y) for all x,y in V∪E.Hence µ��  is a 

bipolar fuzzy relation on the bipolar fuzzy subset ���. Hence 

The pair BT(G): (��� , µ��) is a bipolar fuzzy graph, and is termed as bipolar total fuzzy graph of G. 

Example: 2.3 
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Definition : 2.4 

A bipolar fuzzy graph with the underlying crisp graph �∗ :(�∗,µ∗) is defined to be a pair G:( σ, µ) where  σ= (�σ
� 

,��
�  ), µ= (�µ

�  ,�µ
�  ).Let �∗  be (V,E).The nodes and edges of G are taken together as node set, of the pair 

Bsd(G):(σ���  ,µ���  ), where σ���= (�
σ���
�  ,�����

�  ),  µ���= (�µ���
�  ,�µ���

�  ).In Bsd(G) each edge ‘e’ in G is 

replaced by a new vertex and that vertex is made as a neighbour of those vertices which lie on ‘e’ in G. Hence 

σ���is a bipolar fuzzy subset defined on V∪E as 

                                               σ���
� (x)   =   σ�(x)              if   x ∈ V 

                  =   µ�(e)                  if   e ∈ V 

       σ���
� (x)   =   σ�(x)                 if   x ∈ V 

                   =   µ�(e)                 if   e ∈ V 

The bipolar fuzzy relation µ���  on V∪E is defined as µ���
� (x,e) ≤  ����

� (x) ˄  ����
� (e),  µ���

� (x,e) ≥ ����
� (x) ˅ 

����
� (e) for all x,e in V∪E,  µ���(x,e) is a bipolar fuzzy relation of σ��� and hence the pair Bsd(G):(σ��� ,µ���) is a 

bipolar fuzzy graph. This pair is termed as bipolar subdivision of fuzzy graph G. 

Definition: 2.5 

A bipolar fuzzy graph with an underlying set V is defined to be a Pair G:( σ, µ), where  σ= (�σ
�  ,��

�  ),                   

µ= (�µ
� ,  �µ

� )  and crisp graph �∗ :(�∗,µ∗).The Pair σ��= (�σ��
�  ,����

�  ),  µ��= (�µ��
�  ,�µ��

�  ). we call σ�� 

the bipolar middle fuzzy vertex set of V,  µ�� the bipolar middle fuzzy edge set of E respectively. The bipolar fuzzy 

subset σ�� is defined on V∪E as 

                                               σ��
� (x)   =   σ�(x)                if   x ∈ V 

         =   µ�(e)                 if   e ∈ E 

                                                    σ��
� (x)    =   σ�(x)         if   x ∈ V 

         =   µ�(e)                if   e ∈ E                               

The bipolar fuzzy relation   µ�� is defined as 

                           µ��
� (�
,��) = µ(�
) ˄ µ(��)         if �
,�� ∈ µ∗ are adjacent in �∗ 

                                              =         0                   otherwise 

                           µ��
� (�
,��) = µ(�
) ˅ µ(��)         if �
,�� ∈ µ∗ are adjacent in �∗ 

                                              =      0                      otherwise 

                          µ��
� ( 
, �)  =      0                      if   
, � are in �∗   

                          µ��
� ( 
, �)  =      0                      if   
, � are in �∗ 

                         µ��
� ( 
,��)  =   µ(��)                    if   
 in   �∗ lies on the edge �� ∈ µ∗  

                                             =    0                         otherwise               

                         µ��
� ( 
,��)  =   µ(��)                    if   
 in   �∗ lies on the edge �� ∈ µ∗  

                                             =    0                          otherwise 

By the definition µ��
� (x,y) ≤ ���

� (x) ˄ ���
� (y), µ��

� (x,y) ≥ ���
� (x) ˄ ���

� (y), for all x,y in  V∪E.Hence  µ��is a 

bipolar fuzzy relation on the bipolar fuzzy subset  ���.Hence the pair BM(G):(σ�� , µ��) is a bipolar fuzzy graph 

and is termed as bipolar middle fuzzy graph of G. 

Definition: 2.6                                                                                 

Let �! and �" be the bipolar fuzzy graphs. A homomorphism f from �! to �" is a mapping f:#! → #" which 

satisfies the following conditions. 

         (a)        µ%&

� ('!) ≤ µ%(

� ()('!))                 for all  '! ∈ #!     

                      µ%&

� ('!) ≥ µ%(

� ()('!))                 for all  '! ∈ #! 
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         (b)        µ�&

� ('!,!) ≤ µ�(

� ()('!))(,!))     

                      µ�&

� ('!,!) ≥ µ�(

� ()('!))(,!))  

Definition: 2.7 

 Let �! and �" be the bipolar fuzzy graphs. An isomorphism f from �! to �" is a bijective mapping f:#! → #" 

which satisfies the following conditions. 

    (a)        µ%&

� ('!)      = µ%(

� ()('!))             for all  '! ∈ #!     

                 µ%&

� ('!)      = µ%(

� ()('!))             for all  '! ∈ #! 

   (b)        µ�&

� ('!,!)  =  µ�(

� ()('!))(,!))  for all '!,! ∈ �! 

               µ�&

� ('!,!)  =  µ�(

� ()('!))(,!))  for all '!,! ∈ �!   

  We denote �! ≅  �" if there is an isomorphism from �! to �". 

Definition: 2.8 

Let �! and �" be the bipolar fuzzy graphs. Then, a weak isomorphism f from   

�! to  �" is a bijective mapping f:#! → #" which satisfies the following conditions, 

(a)    f is homomorphism 

(b)   µ%&

� ('!) = µ%(

� ()('!))      for all  '! ∈ #!     

                 µ%&

� ('!) = µ%(

� ()('!))      for all '! ∈ #! 

 

3.    PROPERTIES OF BIPOLAR TOTAL FUZZY GRAPH 

Theorem: 3.1 

Order BT(G) = Order (G) + Size (G) = Order Bsd(G) 

Proof: 
As the node set of BT(G) is V∪E and the bipolar fuzzy subset σ�� on V∪E is defined as 

(���
� (x), ���

� (x)) = (��(x), ��(x))       if x∈V 

                            = (µ�(e), µ�(e))       if e∈V 

Ordr BT(G)         = (∑ ���
�

0∈1∪2 (x), ∑ ���
�

0∈1∪2 (x)) 

                            = (∑ ���
�

0∈3 (x), ∑ ���
�

0∈3 (x)) + (∑ ���
�

0∈2 (x), ∑ ���
�

0∈3 (x)) 

                            = ∑ �(')0∈�∗  + = ∑ µ(')0∈µ∗  

                            = Order (G) + Size (G) 

                            = Order Bsd(G) 

 

Theorem:3.2 

Size BT(G) = 3Size (G) +  ∑ µ(45)˄µ(46)4546∈µ∗  

Proof:  

Size BT(G) = (∑ µ��
�

0,8∈1∪2 (x,y), ∑ µ��
�

0,8∈1∪2 (x,y)) 

 

                   = (∑ µ��
�

0,8∈1 (x,y), ∑ µ��
�

0,8∈1 (x,y)) + (∑ µ��
�

0,8∈2 (x,y), ∑ µ��
�

0,8∈2 (x,y))  

                                                   + ( ∑ µ��
�

0∈1,8∈2 (x,y), ∑ µ��
�

0∈1,8∈1 (x,y)) 

 

                    = Size (G) + ∑ �(')˄µ(,)0∈1,8∈2 + ∑ µ(,
)˄µ(,�)89 ,8:∈2  

                    = Size (G) +      2 ∑ µ(,)8∈2        +    ∑ µ(,
89 ,8: ∈2 )˄µ(,�)     
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                                                (Since two vertices lie on each edge &  

                                                 Its weight is less than the weight of the vertices) 

Hence, 

Size BT(G) = Size (G) + 2 Size(G) + ∑ µ(,
89,8:∈2 ) ˄ µ(,�) 

                    =             3Size(G)        + ∑ µ(,
89,8:∈2 ) ˄ µ(,�) 

 

4. WEAK ISOMORPHISM ON BIPOLAR TOTAL FUZZY GRAPH 

Theorem: 4.1 

If G is a bipolar fuzzy graph then Bsd(G) is weak isomorphic to BT(G). 

Proof: 

A bipolar fuzzy graph with the underlying crisp graph �∗ :(�∗,µ∗) is defined to be a pair  

G:( σ, µ) where  σ= (�σ
� ,��

� ), µ= (�µ
� ,�µ

� ). Let �∗ be (V,E). By the definition of the bipolar subdivision fuzzy 

graph Bsd(G) : (���� , µ���) where 

 σ��� =  ;�
σ���
�  , �����

�  <,  µ���= (�µ���
�  ,�µ���

�  ) and ���� on V∪E is defined as 

 

                       ����
� (x) = �%

�(x)     if x∈V and 

                                    = µ�
�(x)      if x∈E 

                       ����
� (x) = �%

�(x)     if x∈V and                                                 (1) 

                                    = µ�
�(x)      if x∈E  

 

      The fuzzy relation µ��� on V∪E is a fuzzy relation on σ���, defined as, 

       µ���
� (x,e)  = σ���(x) ˄ σ���(e)     if x∈V, e∈E and x lies on e 

                         =         0                          otherwise 

       µ���
� (x,e)  = σ���(x) ˅ σ���(e)     if x∈V, e∈E and x lies on e 

                         =         0                          otherwise  

 

       Using  eqn (1) in the above equation 

 

ie)  µ���
� (x,e)  = �(x) ˄ µ(e)                 if x∈V, e∈E and x lies on e 

                         =    0                               otherwise 

       µ���
� (x,e)  = �(x) ˅ µ(e)                 if x∈V, e∈E and x lies on e 

                         =     0                               otherwise 

 

Define a map ‘h’ from sd(G) to T(G), as the identity map h: V∪E→ V∪E, h will be a bijection satisfying ���
� (h(x)) 

= ���
� (x) = ��(x) = ����

� (x), ���
� (h(x)) = ���

� (x) = ��(x) = ����
� (x) if u∈V (by the definition of BT(G) and Bsd(G)) 

      ���
� (h(x)) = ���

� (x) = µ�(x) = ����
� (x)               if x∈E 

      ���
� (h(x)) = ���

� (x) = µ�(x) = ����
� (x)              if x∈E 

 

ie)     ���
� (h(x)) = ����

� (x)                                              for all x in V∪E                                  

          ���
� (h(x)) = ����

� (x)                              for all x in V∪E                                   (2)  

Case : 1 

If x,y∈V ,  µ��
� (h(x),h(y)) = µ��

� (x,y) = µ�(x,y)           if x & y ∈ V, (x,y)∈ µ∗ 
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                  µ��
� (h(x),h(y)) = µ��

� (x,y) = µ�(x,y)          if x & y ∈ V, (x,y)∈ µ∗ 

By definition of Bsd(G), 

                  µ���
� (x,y) = 0      if x,y∈V, 

                  µ���
� (x,y) = 0      if x,y∈V 

 

                 µ���
� (x,y) ≤  µ��

� (h(x),h(y))                        if x,y∈V 

                 µ���
� (x,y) ≥  µ��

� (h(x),h(y))                        if x,y∈V                                  (3)                                      

Case : 2 

If x∈V , y=e∈E, then 

µ��
� (h(x),h(e)) = µ��

� (x,e) = �(x)˄µ(e)     if x∈V,e∈E and x lies on e 

                                             =       0              Otherwise 

µ��
� (h(x),h(e)) = µ��

� (x,e) = �(x)˅µ(e)     if x∈V,e∈E and x lies on e 

                                             =       0              Otherwise 

ie)        µ���
� (x,e)   =  µ��

� (h(x),h(e))          if x∈V , e∈E  

             µ���
� (x,e)   =  µ��

� (h(x),h(e))         if x∈V , e∈E (by definition  of Bsd(G)) 

Case : 3 

If x = �
, y = �� ∈E , then 

µ��
� (�
,��) = µ(�
)�µ(��)       if the edges �
and �� have a node in common between them 

                   =    0                     Otherwise 

µ��
� (�
,��) = µ(�
)�µ(��)       if the edges �
and �� have a node in common between them 

                   =    0                      Oherwise 

 

                              µ���
� (�
,��) =   0                             if �
,�� ∈ E 

                              µ���
� (�
,��) =   0                             if �
,�� ∈ E 

           ie)               µ���
� (�
,��) ≤ µ��

� (�
,��)              if �
,�� ∈ E 

                               µ���
� (�
,��) ≥ µ��

� (�
,��)              if �
,�� ∈ E                                      

 

From (3),(4) & (5) 

                               µ���
� (x,y) ≤ µ��

� (h(x),h(y))          for all x,y ∈ V∪E  

                               µ���
� (x,y) ≥ µ��

� (h(x),h(y))          for all x,y ∈ V∪E         

Hence by (2) & (5) h: Bsd(G) → BT(G) is a weak isomorphism. 

 

Theorem: 4.2 

BM(G) is weak isomorphic with BT(G) 

Proof: 

Consider the identity map h:BM(G) → BT(G) as  h: V∪E→ V∪E  

By the definition of  ��� in BT(G) and ��� in BM(G) 

We have  

                       ���
� (x) = ���

� (ℎ(x))                   for all x∈V∪E                                   

                       ���
� (x) = ���

� (ℎ(x))                   for all x∈V∪E                                  (1)    

Case :1 

µ��
� (�
,��) = µ(�
)�µ(��)            if �
,�� ∈ µ∗ and are adjacent in �∗ 



 

Weak Isomorphism on Bipolar Total Fuzzy Graph 

-65- 

                    =         0                          Otherwise 

µ��
� (�
,��) = µ(�
)�µ(��)           if �
,�� ∈ µ∗ and are adjacent in �∗ 

                    =         0                          Otherwise  

µ��
� (�
,��) = µ(�
)�µ(��)            if the edges �
 and �� are adjacent  �∗ 

                   =          0                          Otherwise 

µ��
� (�
,��) = µ(�
)�µ(��)            if the edges �
 and �� are adjacent  �∗ 

                   =          0                          Otherwise 

Hence  

         µ��
� (�
,��) = µ��

� (�
,��) = µ��
� (ℎ(�
),ℎ(��))           if �
,�� ∈ µ∗ 

         µ��
� (�
,��) = µ��

� (�
,��) = µ��
� (ℎ(�
),ℎ(��))    if �
,�� ∈ µ∗ 

 

Case: 2                 µ��
� (x,y) =  0                                               if ', , are in�∗ 

                           µ��
� (x,y) =  0                                                if ', , are in�∗  

 

                          µ��
� (x,y) =   µ� (x,y)                                       if x, y ∈ �∗    

                          µ��
� (x,y) =  µ� (x,y)                                       if x, y ∈ �∗ 

 

                             µ��
� (x,y)  =  0  ≤ µ�(x,y) = µ��

� (x,y) if x,y are in �∗  

                             µ��
� (x,y)  =  0  ≥ µ�(x,y) = µ��

� (x,y) if x,y are in �∗ 

 

Case: 3 

           µ��
� (,
,��)  = µ�(��)   if ,
 in �∗lies on the edge �� ∈ µ∗ 

                                 =      0                 Otherwise 

           µ��
� (,
 , ��)  = µ�(��)   if ,
 in �∗lies on the edge �� ∈ µ∗ 

                                =      0                  Otherwise 

So, 

           µ��
� (,
 , ��) = µ��

� (,
 , ��) = µ��
� (ℎ(,
),ℎ(��)),                if ,
 ∈V, �� ∈E 

           µ��
� (,
 , ��) = µ��

� (,
 , ��) = µ��
� (ℎ(,
),ℎ(��)),                if ,
 ∈V, �� ∈E 

 

From all the three cases, 

          µ��
� (x,y) ≤ µ��

� (h(x),h(y))                               for all x,y ∈ V∪E 

          µ��
� (x,y) ≥ µ��

� (h(x),h(y))                               for all x,y ∈ V∪E                 (2) 

 

‘h’ being a  bijection and from equations (1) & (2)  BM(G) Is weak isomorphic with BT(G).                                                                                

 

5. CONCLUSION : 

 In this paper new concepts bipolar total fuzzy graph is introduced. It is found that Bsd(G) is weak isomorphic to 

BT(G), BM(G) is weak isomorphic to BT(G). it is proved the weak isomorphism between the bipolar subdivision 

fuzzy graph and bipolar total fuzzy graph, bipolar middle fuzzy graph and bipolar Total fuzzy graph.  
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ABSTRACT : 

This paper considers the stable set of hypergraphs and presents several new results and algorithms using the 

semi- tensor product of matrices. By the definitions of an incidence matrix of a hypergraph and characteristic 

logical vector of a vertex subset, an equivalent algebraic condition is established for hypergraph stable sets, as 

well as a new algorithm, which can be used to search all the stable sets of any hypergraph. 

 

1.  INTRODUCTION 

 A hypergraph H = (V, E) is composed of a finite set and a collection E of nonempty subsets of V, in which V is 

called the vertex set of H and E is called the edge set of H. Thus, graphs are a special kind of hypergraphs with two 

vertices in each edge. One of the basic problems about hypergraph theory is the stable set problem, which has been 

widely applied in many research fields like network coding 
[1],[2]

. Another basic problem about hypergraph theory is 

the coloring problem, which is one of NP-complete problems. There are various forms of hypergraph coloring such 

as vertex coloring, good coloring of edges, strong coloring, and equitable coloring. Graph coloring has been widely 

used in many real-life areas including scheduling and timetabling in engineering, register allocation in compilers, 

and air traffic flow management and frequency assignment in mobile
[3],[4], [5],[6]

 . The coloring problems of a special 

kind of graphs have been widely discussed in
[7], [8],[9]

 . In recent years, there have been some references considering 

hypergraph theory, such as
[10],[11]

. It has been successfully applied to many different areas such as Markov decision 

process
[12]

, complete simple games
[13]

, linear programming 
[14]

 , and cooperation structures in games 
[15]

 . And a few 

references have analyzed the colorability of different kinds of hypergraphs . However, there are no proper algebraic 

algorithms for stable set and coloring problems of hypergraphs. Thus, they are still open problems and it is 

necessary for us to establish new formulations and algorithms. 

In recent years, Cheng et al.
 [16],[17]

 have proposed an effective tool, called the semitensor product (STP) of matrices. 

Via STP, Boolean networks can be converted into an algebraic form and many problems of Boolean networks, such 

as controllability and observability 
[18]

, fixed points and cycles , and control design problems , have been 

investigated.  

 we investigate the stable set and vertex coloring problems of hypergraphs and present some new results and 

algorithms via STP. By incidence matrix and characteristic logical vector (CLV), a necessary and sufficient 

condition, as well as a new algorithm, is established for hypergraph stable sets. Then, we study the vertex coloring 

problem. An algebraic equivalent condition and an algorithm for coloring problem are obtained. With the two 

algorithms, we can calculate all the stable sets and coloring schemes with the given colors for any hypergraph. The 

results we obtained in this paper are feasible and clear, illustrated by an example and a practical application to the 

storing problems. Compared to
[19]

, which has considered the stable set and coloring problems of graphs by STP, the 

results we obtained seem to be the generalization of 
[19]

. However, just applying the results about graphs in 
[19]

 to 
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hypergraphs, we cannot get the similar results about hypergraphs. In fact, there are many differences. We use 

incidence matrix of hypergraphs, while Wang et al. in 
[19]

 have used adjacent matrix of graphs. The derivations are 

completely different since the fundamental techniques used are not the same. 

 

2.  NOTATIONS  

(i) Mm×n is the set of m × n real matrices. 

(ii) 
i

nδ is the i
th
 column of the identity matrix In. 

(iii) ∆n : = {
i

nδ  | i = 1, . . . , n}, ∆2 : = ∆. 

(iv) D := {0,1}. Identify 1 ∼ 
1

2δ , 0 ∼ 
2

2δ ; then, D ∼ ∆. 

(v) A ∈ Mm×n is called a Boolean matrix, if all its entries are either 0 or 1. The set of m × n Boolean matrices is 

denoted by Bm×n.  

(vi) A matrix L ∈ Mn×r is called a logical matrix if the columns of L, denoted by Col(L), belong to ∆n. That is, 

Col(L) ⊆ ∆n. And Coli(L) means the ith column of L. Denote the set of n × r logical matrices by Ln×r.  

(vii)  If L ∈  Ln×r, by definition it can be expressed as L = 1 1i i i

n n nδ  δ  . . . δ .r    Briefly, we denote it by L = 

n 1 2 rδ i  i  . . . i .       

(viii) For A = (aij), B = (bij) ∈ Mm×n, A ≥≥ (≤≤, ≫, ≪)G means aij ≥ (≤, >, <)bij, for all   i, j.   

(ix)  For a set  S, | S | is the cardinality of  S. 

(x)    A = Diag{A1, A2, . . . , Ar} is a block-diagonal matrix with Ai in the (i, i)th position (1 ≤ i ≤ r).   

(xi)  Let A = (aij) ∈ Mm×n, B ∈ Mp×q. The Kronecker product of matrices and is defined as 

  

 

11 12 1n

21 22 2n

m1 m2 mn

a B a B a B

a B a B a B
A B  =  .

a B a B a B

 
 
 ⊗
 
 
 

L

L

M M O M

L

                      ……..    (1) 

  

3. PRELIMINARIES 

In this section, we shall give some necessary preliminaries on STP and hypergraph theory, which will be used later. 

3.1. Definition  

Let A ∈ Mm×n and B ∈ Mp×q. The STP of matrices A and B, denoted by A ⋉ B, is defined as 

A ⋉ B = (A ⊗ Is/n)(B ⊗ Is/p)                . . . (2) 

where s = lcm{n, p} is the least common multiple of  n and p. 

3.2. Definition  

A  swap  matrix W[m, n] is an mn × mn matrix, defined as follows: label its columns by (11, 12, ..., 1n, ..., m1, m2, 

..., mn); label its rows by (11, 21, ..., m1, ..., 1n, 2n, ..., mn) and then the element at the position [(I, J), (i, j)] is 

w(I,J),(I,j) = 
I,J

i,jδ = 
1,  I = i, J = j,

0,  Otherwise.





               . . . (3) 
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3.3. Definition  

Let A = (aij), B = (bij)  ∈ Mm×n. The Hadamard product of  and  is defined as A ⊙ B = (aijbij) ∈ Mm×n . . . (4)  

3.4. Definition  

Let V={v1, v2, ..., vn} be a finite set, and let E = {E1, E2, …, Em} be a family of subsets of V ; that is, Ej ⊆ V, j = 1, 

2, ..., m. The family E is said to be a hypergraph on   denoted by H = (V, E), if Ej ≠ φ, j = 1, 2, ..., m, and 
m

jj = 1
E = V.U  The elements v1, v2, ..., vn are called the vertices (hypervertices) and the sets E1, E2, …, Em are called 

the edges (hyperedges). 

The incidence matrix of hypergraph H = (V, E) is a matrix A = (aij) with   rows that represent the edges of H and n 

columns that represent the vertices of H, such that 

   aij = 
j i

j i

1,  v   E ,

0,  v   E .

∈


∉
         . . . (5)  

 

3.5. Definition  

Given a hypergraph H = (V, E), a set S ⊆ V is called a stable set if it contains no edge Ei with | Ei | > 1. 

Furthermore, S is called a maximum stable set, if any vertex subset strictly containing S is not a stable set. A stable 

set is called an absolutely maximum stable set if | S | is the largest among all of the stable sets of H. The stable 

number of H, denoted by α(H), is defined to be the maximum cardinality of all the stable sets of H. 

3.6. Definition  

A q-coloring is defined to be a partition of V into q stable sets S1, S2, ..., Sq, each corresponding to a color. A 

hypergraph for which there exists a q-coloring is said to be q-colorable. 

 

4.  STABLE SET PROBLEM 

In the section, we investigate the stable set problem of hypergraphs using the STP method and present algebraic 

equivalent conditions, as well as an algorithm. 

Given a hypergraph H = (V, E) with n vertices V = {v1, v2, ..., vn} and m edges        E = {E1, E2, ..., En}, assume that 

the incidence matrix of H is A = (aij)m×n. Denote the ith row of A of  by ai, i = 1, 2, ..., m ; then A =  
T

T T T

1 2 ma ,  a ,  ..., a .    Assume that S is a subset of V.  Then, in the following, we will discuss under what conditions 

the subset is a stable set. First, we define some vectors. 

The CLV of S, denoted by VS = [x1, x2, ..., xn], is denoted as 

xi = 
i

i

1,  v   S,

0,  v   S.

∈


∉
          . . . (6)  

And then denote 

  yij = 
ij

ij

a
,

1 a

 
 

− 
 yj = 

ij

j

x
,

1 x

 
 

− 
        . . . (7)  

i = 1, 2, ..., m ; j = 1, 2, ..., n ;   

It is easy to see that VS is a Boolean vector and yij, yj ∈ ∆. Then, we can present the following results. 
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4.1. Theorem : Consider the hypergraph H = (V, E) expressed as above. Then S is a stable set of H if and only if 

the last row of matrix M has atleast one zero element, where  

  M  = ( )( )k k

n 1

k 1

mn

j 1
j = 21

l 
[2,2 ]

= 1

M Y ,I W−

=
⊗

  
⊗   

   
∑â       . . . (8)  

  M = MnMi(I2 ⊗ Mc)Mr, Yl = tt l

n

1y
=

â        

Proof. Let lE  = El \ S with CLV [ ]1 l1 l2 lna  = a , a ,  . . . , a ,  l = 1, 2, . . . , m. Denote 

  
lt

lt

lt

a
y  = ,

1 a

 
 

− 
 l = 1, 2, ..., m ; t = 1, 2, ..., n ;      . . . (9)  

Then, S is a stable set if and only if, for every l ∈ {1, 2, . . . , m}, lE  ≠ φ ; that is 
1 1 na   0 .

×
≠  Since 

1 1 na   0
×

≠  if 

and only if 
n

n

2

lt 2

n

t 1 y δ
=

≠â if and only if the last element of 
n

n

2

lt 2

n

t 1 y δ
=

≠â  if and only if the last element of tt l

n

1y
=

â  is 0, 

we just need to prove that, for every l ∈ {1, 2, . . . , m}, the last element of tt l

n

1y
=

â  is 0 if and only if the last row of 

matrix M  has one zero component at least. 

 Let 
n

n

T 2

1 2
J  =  δ .  If, for every l ∈ {1, 2, . . . , m}, the last element of tt l

n

1y
=

â  is 0, then, we get, for every l, 

n

1 tt l1 yJ 0.
=

=â
 
Thus, 

lty
 
satisfies 

  

m

lt

l =

n

1 t 1

 1

0J y
=

=∑â          . . . (10) 

Since  l l lt lt lt tE  = E \ S, a  = a a x .− ∧
 
Hence, 

lty
 
= ( )( )lt lt t lt lt t

y y y  = y y y− ∧ ¬ → ∧
  

 
= ( )n i lt c lt t n i 2 c r lt t

M M y M y y  = M M l M M y y⊗
      

. . . (11) 

 lt t My y .�
       

 

So (10) can be expressed as  

  

m

lt t

l = 

n

1 1

1

t y yJ M 0
=

=∑â          . . . (12)  

By Definition 3.5, we have 

  ( )
n

lt t j lt t
j = 1

n n

t 1 t 1y y  = M y y ,M
= =

 
⊗ 

 
â â      

  lt t

n

1 ty y
=

â
 
= yl1ylyl2y2 . . . ylnyn 

      = 
[ ]l1 l2 1 2 ln n2,2

y W y y y ....y y
  

                             = 
[ ]( )2 l1 l2 1 2 ln n2,2

l W y y y y ....y y  = ....⊗
 

                             = k k l2 2,2

n-1

k 1 l W Y Y
 
 

=

 
⊗ 

 
â

       
. . (13) 

where Y = 
n-1

1 2k ty
=

∈ ∆â
 

and Yl is described in (8). Therefore, (10) becomes 

    k k

m n

l2 2,2j = 1
l =

n-1

1

 

1 k

1

M l W YJ Y 0
 
 

=

   
⊗ ⊗ =  

  
∑ â

       

. . . (14) 

That is, 

 1J MY = 0

           

. . . (15) 
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Noticing that n2
Y ,∈ ∆  we have that (15) having solution Y is equivalent to the last row of M  having one zero 

element at least. The necessity is proved. 

4.2. Algorithm   

Consider a hypergraph H  The following steps are given to find all the stable sets of H.   

(1) Calculate the matrix M  given in (8).     

(2) Denote the last row of  M  by β = [b1, b2, ..., n2
b ]. If bi ≠ 0, for every i ∈ [1, 2, . . . , 2

n
], then, H has 

no stable set and stop. Otherwise, find out all the zero elements of β : 
1 2i i ib  = b  = . . . = b  = 0.

p
 Then, 

ki
b  =  0  

corresponds to a solution, Y = k
n

i

2
δ , of (15) and so does a stable set of H. 

(3) From k
n

i

j 2

n

j 1
y  δ ,

=
=â  we can retrieve yt as yt = k

n

i

j

n n n

t 1 t 2j
y  S δS ,

=
=â  t = 1,2, .., n, where

 

n

tS ,  t = 1, 2, . . . , n, are 

defined as follows [13] :  

  
{

n-1 n-1

n

l 2

2 2

S  = δ 1  ...  1 2  ...  2 ,
 
 
 
 

123
     

  
{ {

n-2 n-2n-2 n-2

n

2 2

2 22 2

S  = δ 1  ...  1 2  ...  2  1  ...  1 2  ...  2 ,
 
 
 
 

123 123
   

  
n-1

n

n 2

2 2

2

S  = δ 1       2  . . . 1       2 ,

 
 
 
 
  

123 123
144424443

       . . . (16) 

By the definition of (12), we obtain the stable set corresponding to k
n

i

2
δ : 

  S(ik) = { }
1

t t 2v  | y  = δ , 1  t  n≤ ≤

       

. . . (17) 

Thus, all the stable sets of H are { }k
S(i ) |  k = 1, 2, . . . , p .  

4.3. Example : Consider the hypergraph H = (V, E), where V = {v1, v2, v3, v4, v5},    E = {E1, E2, E3, E4},  E1 = {v1, 

v2, v3}, E2 = {v3, v4, v5}, E3 = {v2, v3, v4}, and   E4 = {v2, v4, v5}.  

By the definition of the incidence matrix of the hypergraph H, the incidence matrix of is 

 A = 

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

0 1 0 1 1

 
 
 
 
 
 

         . . . (18)  

By MATLAB toolbox, we easily get     

  M = 
0 1 0 0

1 0 1 1

 
 
 

   

  Y1 = 5

4

2
δ ,

  

Y2 = 5

25

2
δ ,

       

. . . (19)

 
  Y3 = 5

18

2
δ ,

  

Y4 = 5

21

2
δ ,  

Thus,             

 5 5 5 5

4 25 18 21

2 2 2 2

4

l

l = 1

δ  + δ  + δ  + δY  = ∑
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= [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0]
T
  

Then, we obtain the last row of M as  

 β = [4 2 1 1 1 0 0 0 1 0 0 0 0 0 0 0 3 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0]    . . . (20)  

and the indexes of zero elements in β are 

 P = { }k k
i  |  β(i )  =  0   

 = [6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32] 

             . . . (21)  

For each index ik ∈ P, let k
n

i

i 2

5

i 1
y  δ ,

=
=â  via computing yi =

k
5

i5

i 2
S δ  = 1, 2, . . ., 5,  we have all the stable sets of   as 

follows : 

 i1  = 6 ~ (x1, x2, x3, x4, x5)  

             = (1, 1, 0, 1, 0) ~ S1 = {v1, v2, v4}, 

 i2  = 7 ~ (x1, x2, x3, x4, x5)  

             = (1, 1, 0, 0, 1) ~ S2 = {v1, v2, v5}, 

 i3  = 8 ~ (x1, x2, x3, x4, x5)  

             = (1, 1, 0, 0, 0) ~ S3 = {v1, v2} 

 i4  = 10 ~ (x1, x2, x3, x4, x5)  

             = (1, 0, 1, 1, 0) ~ S4 = {v1, v3, v4}, 

 i5  = 11 ~ (x1, x2, x3, x4, x5)  

             = (1, 0, 1, 0, 1) ~ S5 = {v1, v3, v5}, 

 i6  = 12 ~ (x1, x2, x3, x4, x5)  

             = (1, 0, 1, 0, 0) ~ S6 = {v1, v3}, 

 i7  = 13 ~ (x1, x2, x3, x4, x5)  

             = (1, 0, 0, 1, 1) ~ S7 = {v1, v4, v5}, 

 i8  = 14 ~ (x1, x2, x3, x4, x5)  

             = (1, 0, 0, 1, 0) ~ S8 = {v1, v4}, 

 i9  = 15 ~ (x1, x2, x3, x4, x5)  

             = (1, 0, 0, 0, 1) ~ S9 = {v1, v5}, 

 i10  = 16 ~ (x1, x2, x3, x4, x5)  

             = (1, 0, 0, 0, 0) ~ S10 = {v1}, 

 i11  = 19 ~ (x1, x2, x3, x4, x5)  

             = (0, 1, 1, 0, 1) ~ S11 = {v2, v3, v5}, 

 i12  = 20 ~ (x1, x2, x3, x4, x5)  

             = (0, 1, 1, 0, 0) ~ S12 = {v2, v3}, 

 i13  = 22 ~ (x1, x2, x3, x4, x5)  

             = (0, 1, 0, 1, 0) ~ S13 = {v2, v4}, 

 i14  = 23 ~ (x1, x2, x3, x4, x5)  

             = (0, 1, 0, 0, 1) ~ S14 = {v2, v5}, 

 i15  = 24 ~ (x1, x2, x3, x4, x5)  

             = (0, 1, 0, 0, 0) ~ S15 = {v2}, 

 i16  = 26 ~ (x1, x2, x3, x4, x5)  

             = (0, 0, 1, 1, 0) ~ S16 = {v3, v4}, 
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 i17  = 27 ~ (x1, x2, x3, x4, x5)  

             = (0, 0, 1, 0, 1) ~ S17 = {v3, v5}, 

 i18  = 28 ~ (x1, x2, x3, x4, x5)  

             = (0, 0, 1, 0, 0) ~ S18 = {v3}, 

 i19  = 29 ~ (x1, x2, x3, x4, x5)  

             = (0, 0, 0, 1, 1) ~ S19 = {v4, v5}, 

 i20  = 30 ~ (x1, x2, x3, x4, x5)  

             = (0, 0, 0, 1, 0) ~ S20 = {v4}, 

 i21  = 31 ~ (x1, x2, x3, x4, x5)  

              = (0, 0, 0, 0, 1) ~ S21 = {v5}, 

 i22  = 32 ~ (x1, x2, x3, x4, x5)  

             = (0, 0, 0, 0, 0) ~ S22 = φ          . . . (22)  

Therefore, from  the  calculation  results,  we  know maxig
{|Sik

|} = 3; all the absolutely maximum stable sets are 

{S1, S2, S4, S5, S7, S11}. 

 

5.  APPLICATION IN STORING PROBLEM   

 A company produces different kinds of chemicals which contain some products that cannot be put in the same 

storehouse . The problem is that how many storehouses are needed at least  to store the  kinds of chemicals and how 

to assign them. In order to solve the problem, we denote the  kinds of chemicals by V = {v1, v2, ..., vn} and kinds of 

circumstances by E = {E1, E2, ..., Em} where the chemicals in E1 ⊆ V, i = 1, 2, . . . , m, cannot be put in the same 

storehouse. Immediately, we obtain a hypergraph H = (V, E). Then some chemicals can be put in the same 

storehouse if and only if the vertices corresponding to the chemicals can be colored with the same color. Therefore, 

to assign these chemicals is equivalent to solve the coloring problem of H. 

5.1. Example   

There are five kinds of chemicals denoted by V = {v1, v2, v3, v4, v5} needed to be put into two storehouses. Let a 

hypergraph have the vertex set as V. And we know that some dangerous thing will happen if the following 

combinations appear : {v1, v2, v3}, {v3, v4, v5}, {v2, v3, v4}, and {v2, v4, v5}. Then we consider that these 

combinations are edges of the hypergraph. Thus, the storing problem is equivalent to the hypergraph coloring 

problem with two different colors
[8]

. Letting a two-color set N = {c1 = Red, c2 = Blue}, we can get all the coloring 

schemes. The incidence matrix of the hypergraph
[7]

 is as follows : 

  

 A = 

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

0 1 0 1 1

 
 
 
 
 
 

         . . . (23) 

Using MATLAB toolbox, we easily obtain 

 b = [3  3  3  3]
T
, 

M = 

3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3

3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3
  

3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3

3 1 1 1 3 1 1 1 1 1 1 3 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 3 1 1 1 3

 
 
 
 
 
 

 

             . . . (24)  
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Then, the index set Q of j satisfying Colj(M) << b, is  

 Q  = {j | Colj(M) << b}         . . . (25)  

  = {6, 7, 10, 11, 13, 14, 19, 20, 22, 23, 26, 27} 

For each j ∈ Q, let s

j

i 2

5

i 1x  δ .
=

=â   By computing xi = s

j

2

5

i,2δ ,  i = 1, 2, .S .., 5,  we have 

j = 6,  5

6

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[1  1  0  1  0], 

j = 7,  5

7

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[1  1  0  0  0], 

j = 10,  5

10

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[1  0  1  1  0], 

j = 11,  5

11

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[1  0  1  0  1],  

j = 13,  5

13

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[1  0  0  1  1], 

j = 14,  5

14

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[1  0  0  1  0],  

j = 19,  5

19

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[0  1  1  0  0],  

j = 20,  5

20

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[0  1  0  1  0],  

j = 22,  5

22

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[0  1  0  0  1],  

j = 23,  5

23

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[0  1  0  0  1],  

j = 26,  5

26

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[0  0  1  1  0],  

j = 27,  5

27

2
δ  ~ [x1, x2, x3, x4, x5] = δ2[0  0  1  0  1],      . . . (26) 

from which we obtain the following 12 coloring schemes : 

  Scheme 1 :  
1

6

cS = {v1, v2, v4} (Red), 

    
2

8

cS = {v3, v5} (Blue) ; 

  Scheme 2 :  
1

7

cS = {v1, v2, v5} (Red), 

    
2

8

cS = {v3, v4} (Blue) ;  

  Scheme 3 :  
1

10

cS = {v1, v3, v4} (Red), 

    
2

8

cS = {v2, v5} (Blue) ;  

  Scheme 4 :  
1

11

cS = {v1, v3, v5} (Red), 

    
2

8

cS = {v2, v4} (Blue) ;  

  Scheme 5 :  
1

13

cS = {v1, v3, v5} (Red), 

    
2

8

cS = {v2, v4} (Blue) ;  

  Scheme 6 :  
1

14

cS = {v1, v4} (Red), 

    
2

8

cS = {v2, v3, v5} (Blue) ;  

  Scheme 7 :  
1

19

cS = {v2, v3, v5} (Red), 

    
2

8

cS = {v1, v4} (Blue) ; 

  Scheme 8 :  
1

20

cS = {v2, v3} (Red), 

    
2

8

cS = {v1, v4, v3} (Blue) ;  

  Scheme 9 :  
1

22

cS = {v2, v4} (Red), 
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2

8

cS = {v1, v3, v5} (Blue) ;  

  Scheme 10 :  
1

23

cS = {v2, v5} (Red), 

    
2

8

cS = {v1, v3, v4} (Blue) ;  

  Scheme 11 :  
1

26

cS = {v3, v4} (Red), 

    
2

8

cS = {v1, v2, v5} (Blue) ;  

  Scheme 12 :  
1

27

cS = {v3, v5} (Red), 

    
2

8

cS = {v1, v2, v4} (Blue) ;       . . . (27) 

Thus, there are totally 12 kinds of storing methods. 

 

6.  CONCLUSION 

In this paper, the stable set and vertex coloring problems of hypergraphs have been revised. Several new results and 

algorithms have been presented via a method of STP. By defining the incidence matrix of hypergraph and CLV of a 

vertex subset, one equivalent condition has been established for hypergraph stable set. And a new algorithm to find 

out all the stable sets and all the absolutely maximum stable sets has been obtained. Furthermore, we have 

considered the vertex coloring problem and got a necessary and sufficient condition in the form of algebraic 

inequality, by which an algorithm has been derived to search all the coloring schemes and minimum coloring 

partitions with the given colors for any hypergraph. Finally, the illustrative example and the application to storing 

problem have shown that the results presented in this paper are very effective. In papers, the scheduling jobs can 

induce a mixed graph coloring
[20]

, not a hypergraph coloring. Thus, the mixed graph coloring problem will be 

interesting to be discussed by STP in the future. 
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ABSTRACT : 

In this paper, we studied some basic properties of V – super vertex magic labeling and E – super vertex magic 

labeling and established E – super vertex magic labeling  of some families of graphs.  In this survey, we have 

collected studies on the V – super vertex magic labeling and E – super vertex magic labeling of the graph Cn and 

the union graph of mutually non- intersecting Cn, the graph mCn and give some results. 

Keywords :  Vertex magic labelings, super vertex magic labeling and vertex magic constants. 

 

1. INTRODUCTION 

 All graphs in this paper are finite, simple and undirected. For more details and  graph theoretic notations, see 

[10, 11]. 

       Graph labeling traces its origin to the famous conjecture that all trees are graceful presented by A. Rosa [3] in 

1966. Graph labeling is a mapping that maps the graph elements into an integer set. In recent years, many graph  

labelings have been envolved, and an excellent survey of graph labeling can be found in Gallian ̓s paper [4]. 

Sedlacek [12,13] introduced vertex magic labeling and  MacDougall et. al [5, 6] introduced the notion of vertex 

magic total labeling in 1999. If G is a finite, simple and undirected graph with p vertices and q edges, then a vertex 

magic total labeling is a bijection f from V(G) ∪ E(G) to the integers 1, 2, …, p+q with the property that for every 

vertex u ∈ V(G), the sum f(u) + ∑ f(uv)	
∈�(�)  is a constant. They proved that the following graphs have vertex 

magic total labeling: Cn, Pn for n > 2 ; Km, n for m > 1; and Kn for odd n. MacDougall et. al [5] further 

introduced the concept of super vertex magic total labeling. They called a vertex magic total labeling super if 

f(V(G)) = {1, 2,…,p} i.e. the smallest labels are assigned to vertices. Swaminanthan and Jayanti [7] introduced 

another super vertex magic total labeling and called it E- super vertex magic total labeling. They called a vertex 

magic total labeling E-super if f(E(G)) = {1, 2,…,q} Marimuthu and Balakrishanan[8] studied some basic 

properties of such vertex labeling and established E- super vertex magic total labeling for some families of graphs. 

Definition 1.1 Let G (p, q) be a finite graph. A one – one mapping f :V(G)UE(G)→{1,2,..,p+q } is called vertex-

magic total (VMT) labeling if all vertex weight are same  either,  w(u) = f(u) + ∑ f(uv)
∈�(	)  = k, for every u ∈ 

V(G) and k is a constant.   
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Definition 1.2 Let G(V, E) be a graph with a  vertex magic total  labeling. A vertex total labeling is called V- super 

vertex magic if  f(V(G)) = {1, 2,…,p}. Here G is called a V- super vertex magic graph. 

Definition 1.3 Let G(V, E) be a graph with a  vertex magic total  labeling. A vertex total labeling is called E- super 

vertex magic if  f(E(G)) = {1, 2,…,q}. Here G is called a E- super vertex magic graph. 

Definition 1.4 A prism graph, denoted γ�  and sometimes also called a circular ladder graph  is 

a graph corresponding to the skeleton of an n-prism. Prism graphs are therefore both planar and polyhedral. An n-

prism graph has 2n nodes and 3n edges. 

          Let Cn denotes the cycle on n vertices; Pn path on n vertices and m Cn denotes the graph obtained from any m 

copies of Cn which have no common vertex. 

 

2.  SOME RESULTS 

2.1. Some Results on V – Super Vertex Magic Labeling and E – Super Vertex Magic Labeling of graphs 

As to the super vertex magic total labeling of some family of graphs, we have the following results. 

     In 2003, Swaminanthan and Jayanti [7] proved the following results: 

Theorem 1. If G has a V – super vertex magic total labeling, then  

k = 
(���)(�����)�  – 

���� . 

Theorem 2. If G has a E – super vertex magic total labeling, then  k� = q + 
(���)�  + 

�(���)� . 

Corollary 3. If G has a super vertex magic total labeling, then p ∕ q(q+1) if p is odd and p ∕ 2q(q+1) if p is even. 

Corollary 4. If G has V – super vertex magic total labeling, then 

(i). p ≡ 0(mod 8) and q ≡ 0 or 3 (mod 4), or 

(ii). p ≡ 4(mod 8) and q ≡ 1 or 2 (mod 4). 

2.2  Results on E-Super Vertex Magic Labeling of Graphs 

As to the E – super vertex magic labeling of some family of graphs, we have following theorems.  

The following theorem is useful in finding classes of graphs that are not E – super vertex magic. 

Theorem  5.[8] Let G be a graph with p vertices and q edges. If p is even and q = p -1 or p, then G is not E – super 

vertex magic.  

Corollary 6.If p is even, then every tree is not E – super vertex magic. 

Theorem 7. A path Pn is E – super vertex magic if and only if n is odd and n ≥ 3. 

Proof. For even n, Pn cannot admits E – super vertex magic by theorem 5. 

Let V (Pn ) = { v1, v2,…,vn }. Let f : V ∪ E → { 1, 2,…, p +q  } be defined as  

f( vn) = 2n-1, f (vi ) = n + i-2,   i = 1, 2, …, n-1. Label the edges vi vi+1 with 
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f(vi vi+1 ) =  � ����    if i is odd,
n − $�    if i is even.' 

It can be easily checked that f is E – super vertex magic. The magic constant k� is given by 
(��)� .  

Corollary 8. A star graph K1, n is E – super vertex magic if and only if n = 2. 

Proof. When n = 2, K1, n is P3 which is E – super vertex magic by theorem 7. 

Theorem 9. A cycle Cn is E – super vertex magic if and only if n is odd. 

Proof. We denote the vertices of Cn with v1, v2,…,vn. Choose a vertex v1. Begin at edge v1v2 and label the first edge 

1, then label v3 v4, v5 v6,…, vn v1 with numbers 2, 3,…, 
����  and the remaining edges v2 v3, v4 v5,…,vn-1 vn  with the 

remaining consecutive integers 
����  +1, ….., n. When all edges have been labeled, then place the  integer (n+1) on 

vn and move in anti-clockwise direction labeling each vertex with the next consecutive integer. In this labeling the 

E – super vertex magic constant is 
(��)� .     

Example 1. E – Super vertex magic labeling for P5 and C5. 

 

 

Figure 1 : P5 and C5 with magic constants 11 and 14. 

Definition 10 (Fan graph). Fan graph Fn is obtained from wheel graph by deleting one edge of cycle Cn. The 

number of vertices of Fn is n +1 and number of edges is 2n-1. 

Theorem 11. The fan graph Fn   has no E – super vertex magic labeling except n =2. 

Proof. When n = 2, Fn is C3 which is E – super vertex magic by theorem 9. Now suppose Fn has a E – super vertex 

magic labeling then by theorem 2 k� = 2n-1 + 
(���)�  + 

(����)������  

= 
�)�*��(����) . 

which is not an integer for all n except 2, 3, 11. Suppose, there exist a E – super vertex magic labeling for F11, with 

magic constant  k�. Then  k� = 66, but if the edges incident with the central vertex u receives the minimum labels 1 to 

11, then the sum of the edge labels at u = 66. So the vertex weight of u will be greater than 66, the magic constant. 

Thus, F11  is not E – super vertex magic. 
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    A (n, t) kite graph consists a cycle Cn with a t-edge path (tail) attached to one vertex of the cycle Cn. Kite graph  

Kn, t consists number of vertices  n+t and  number of edges is also n+t. 

 

Theorem 12.The kite graph Kn, t has a E- super vertex magic labelings if and only if n+t is odd. 

Proof. Suppose Kn, t has E- super vertex magic labeling then  

To find E-super vertex magic constant,  

   k� = q + 
(���)�  + 

�(���)� . 

k� = (n+t) + 
(��+��)�  + 

(��+)(��+��)��+  

 =  
((��+)�)� . 

 This is an integer if and only if n+t is odd. 

2.3  Results on V-Super Vertex Magic Labeling of Graphs 

As to the V – super vertex magic labeling of some family of graphs, we have following theorems.  

In 2004, MacDougall, Miller [5, 6] gave the following results and presented a conjecture as follows : 

Conjecture 13. A sufficient condition of the graph Kn is V-super vertex magic is n ≡ 0(mod 4); n > 4. 

In 2007, Gomez proved the above conjecture. 

Theorem 14.If graph G has a pendant vertex, then G is not V – super vertex magic. 

Corollary 15. No tree, path Pn and kite Kn, t admit V – super vertex magic labeling. 

Theorem 16. A cycle Cn has a V – super vertex magic if and only if n is odd. 

Proof. We denote the vertices of Cn with v1, v2,…,vn. Choose a vertex v1. Begin at vertex v1 and label the first 

vertex 1, then label v2, v3,…, vn with  consecutive numbers 2, 3,…, n. When all the vertices has been labeled then 

label the edges vi vi+1 with 

f(vi vi+1 ) =  � 2n − $���         if i is odd,
2n − ���� − $�    if i is even.' 

This labeling f clearly has the V – super vertex magic labeling. By theorem 1 magic constant is   

k = 
(���)(�����)�  – 

����  

=
��(����)�  – 

(���)�  

=
(-��))� . 

k = 
-��)�  is not an integer for even n. Therefore Cn has no V- super vertex magic labeling for even n. So  cycle Cn 

has a V – super vertex magic if and only if n is odd. 

        In 2002, MacDougall, Miller and Wallis [9] proved that wheel graph Wn for n > 11, fan graph Fn for n > 10, 

complete bipartite graph Km, n for m ≠ n, m, n ≥ 2 has no vertex magic total labeling. They proved that only 

complete bipartite graph Km, m and  Km, m+1 for m >1 admits vertex magic total labeling. Thus, these are the 

only complete bipartite graph that could admit a V – super vertex magic labeling. Let if possible then by theorem 2  
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k = 
(���)(�����)�  – 

����  

k = 
/�0�0*1(�0�0*��)�0  – 

�0��� . 

This is not an integer either m is odd or even. Thus, we have the following theorem. 

 

Theorem 17. No complete bipartite graph is V- super vertex magic. 

2.4. Some Results on Graphs having both V – Super Vertex Magic Labeling and E – Super Vertex Magic 

Labeling  

As to the V – Super vertex magic total labeling and E – Super vertex magic total labeling of regular graphs, we 

have the following results. 

  In 2002, MacDougall, Miller [6] give results as follows, 

Theorem 18.  If a r- regular graph G of order p has a  V – Super vertex magic total labeling then p and r have 

following properties and 

(i). p ≡ 0(mod 8) and q ≡ 0 (mod 4). 

(ii). p ≡ 4(mod 8) and q ≡ 2 (mod 4). 

The only regular graphs with r = 2 are cycles or disjoint union of cycles. For cycles, Swaminanthan and Jayanti 

gave the complete answer. 

 Theorem 18. The cycle Cn admits E-super vertex magic total labeling  and V- super vertex magic total labeling if 

and only if n is odd. 

 Theorem 19.  m Cn admits E-super vertex magic total labeling  and V- super vertex magic total labeling if and 

only if m and n both are odd. 

Theorem 20.  The prism graph γ�  has a  super vertex magic total labeling.  
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ABSTRACT : 

In this article the existence of fixed point theorems for generalized nonexpansive mappings in q-hyperconvex  

T0-ultra -quasi-metric spaces has been proved. 

Keywords : fixed points, q-hyperconvexity, T0-quasi-metric, T0-ultra-quasi-metric space. 

 

1. INTRODUCTION  

A metric space ��, �	 is said to be hyperconvex if each gathering of closed balls {���
 , �
	}
∈Α ≤ �
 + �� has non-

empty intersection ∩
 ���
 , �
	 ≠ ∅.  In 1956 Aronszajn and Panitchpakdi [1] , presented the thought of  

hyperconvex spaces, who demonstrated that they are the same as injective metric spaces.� −hyperconvex-quasi-

metric space is another currentline of research in hyperconvexity. This conceptwas presented by Kunzi and Otafudu 

in [10].We first outline a portion of the meanings of the hyperconvex metric spaces which were examined by many 

authors see ([4], [5], [6][8], [9], [14],[16] and [17]). We also begin an examination of the properties of  

� −hyperconvex-quasi-metric spaces. 

Further work about q-hyperconvexity can be found in [7], [11], [12]. Recently, Kunzi and Otafudu [10] presented 

and examined the idea of q-hyperconvexity in �� −ultra-quasi-metric spaces and contracting maps with certain 

fixed point theorems for nonexpansive maps on q-hyperconvex quasi-metric space.In this article we study this 

concept by generalizing and by showing that an non-expansive mappings in a q-hyperconvex �� −ultra-quasi-

metric space has a fixed points.  

 

2. DEFINITIONS AND PRELIMINARIES 

This section recalls some elementary definitions and example from the asymmetric topology which are necessary 

for a good understanding of the work below. 

Definition 2.1. Let � be a set and �: � → � → [0,∞	 be a function mapping into the set [0,∞	 of non-negative 

reals. Then � is an ultra-quasi-pseudometric on � if  

�"	���, �	 = 0 for all � ∈ �, and  

�$	���, %	 ≤ max{���, )	, ��), �	} whenever �, ), % ∈ �. 
We shall say that � also satisfies the following condition (known as the �� −condition) 

�*	 for any �, ) ∈ �, ���, )	 = 0 = ��), �	 implies that � = ), then � is called a �� −ultra –quasi-metric space on 

�. 
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Definition 2.2. Let ��, �	 be an �� −ultra-quasi-metric space and let ℱ,��, �	 be the set of all pairs - = �-., -/	 of 

functions where -0: � → [0,∞	 �2 = 1,2	 for any such pairs �-., -/	 and  �4., 4/	we set  

56�-., -/	, �4., 4/	7 = max89):;∈<=6-.��	, 4.��	7, 9):;∈<=64/��	, -/��	7>. 
It is obvious that 5 is an extended �� −ultra-quasi-metric on the set ℱ,��, �	 of these function pairs. 

Definition 2.3. A map -: � → � where  ��, �	 is an ultra-quasi-pseudometric space is called nonexpansive if  

�6-��	, -�)	7 ≤ ���, )	, 
Whenever �, ) ∈ �. 
Definition 2.4. A map -: � → �  where ��, �	  is an ultra-quasi-pseudometric space is called generalized 

nonexpansive if for each �, ) ∈ � with ���, )	 > 0, we have that  

�6-��	, -�)	7 ≤ max8���, )	, ��-��	, �	, �6), -�)	7>. 
 

3. Q-SPHERICAL COMPLETENESS OF HYPERCONVEX 

In this section we shall recall some results about q-spherical completeness of hyperconvex belonging mainly to [12] 

Let ��, �	  be an  q-hyperconvex ultra-quasi-pseudometric space and for each � ∈ �  and �, ∈ [0,∞	 , whenever 

2, @ ∈ A. Let  

B �
 0,C∈D

EF��0, �	 = 8)C ∈ � ∶ �6�0, )C7 ≤ �> 

Be the H��I.	 −closed ball of radius � at �. 
Lemma 3.1. Let ��, �	 be an q-hyperconvex ultra-quasi-pseudometric space.  

Whenever 2, @ ∈ A, moreover let �0 , �C ∈ � and �0, 9C ≥ 0. 
Then  

B�EF
0,C∈D

��0 , �0	 ∩ EFKL��C, 9C		 ≠ ∅. 

If and only if �6�0 , �C7 ≤ max8�0, 9C> 

 

Definition 3.2.A quasi-pseudometric space ��, �	 is called � −hyperconvex provided that for each family ��0	0∈D of 

points in � and families of nonnegative real numbers ��0	0∈D and  �90	0∈D the following condition holds: if  

�6�0 , �C7 ≤ �0 + 9C 

Whenever 2, @ ∈ A, then  

B�EF
0∈D

��0, �0	 ∩ EFKL��0 , 90		 ≠ ∅. 

 

Definition 3.3. Let ��, �	 be an ultra –quasi-pseudometric space. Let ��0	0∈D  be a family of points in � and let 

��0	0∈D  and  �90	0∈D  be families of non-negative real numbers. We shall say that the family 

6EF��0, �0	, EFKL��0, 90	70∈D has a mixed binary intersection property provided that  

�6�0 , �C7 ≤ M"N{�0, 9C} 

Whenever 2, @ ∈ A. 
We say that ��, �	  is � −hyperconvexity provided that each family 6EF��0, �0	, EFKL��0 , 90	70∈D  possessing the 

mixed binary intersection property also satisfies ⋂ �EF0∈D ��0 , �0	 ∩ EFKL��0, 90		 ≠ ∅.   
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Remark 3.4. if � "=� �I. are identical and �0 = 90 for 2 ∈ A , then 6EF��0, �0	7 and 6EFKL��0, 90	7coincide and then 

we recover the well-known definition of hyper convexity due to Aronszajn and Panitchpakdi [1].  

Example 3.5. Let the set ℝ of the reals be equipped with the �� −quasi-metric  

N��, )	 = max{� − ), 0} whenever �, ) ∈ ℝ. Then �ℝ, N	 is � −hyperconvex.  

Example 3.6.(see [13])The q-hyperconvex ultra-quasi-metric space �[0,∞	, =	 is q-spherically complete. 

 

4.  MAIN RESULTS 

Theorem 4.1. Let ��, �	  be a � − hyperconvex �� -ultra-quasi-metric space. If -: � → �  is a  nonexpansive 

mappings, then - has a fixed point. 

Proof. Let � ∈ � and denote by  

EQF = EF6�, ��-��	, �	7 and EQFKL = EFKL R�, �6�, -��	7S 

The closed balls with centers at � ∈ � and radius 

��-��	, �	 and �6�, -��	7respectively such that  

�6�, -��	7 = ��-��	, �	.   Put 

EQ = EQF ∩ EQFKL
 

Let T be the collection of all such closed balls EQ such that � runs over �. 
Define ≼ on T by  

EQ ≼ EV if and only if EV ⊆ EQ. 
It can be proved easily that  �T, ≼	  is a partially ordered set. Let T.  be a nonempty chain in T.  Then by 

� −hyperconvexity of ��, �	, we have that  

B EQ
XY∈TL

= E ≠ ∅. 

Let 9 ∈ E and EQ ∈ T.. Then we have  

���, 9	 ≤ ��-��	, �	 and ��9, �	 ≤ �6�, -��	7. 
Let now � ∈ EV. Then  

��9, �	 ≤ ��-�9	, 9	 

And                                         ���, 9	 ≤ �69, -�9	7. 
��9, �	 ≤ ��-�9	, 9	 

≤ max8�6-�9	, -��	7, ��-��	, �	, ���, 9	> 

= max8�6-�9	, -��	7, ��-��	, �	> 

If �6-�9	, -��	7 ≤ ��-��	, �	, then we have  

��9, �	 ≤ ��-��	, �	. 
If on the other hand we have  

�6-�9	, -��	7 > ��-��	, �	, 
Then  

��9, �	 < max8��-�9	, 9	�6�, -��	7> = �6�, -��	7 

Thus in the both case, we have  

��9, �	 ≤ ��-��	, �	. 
From the above inequality, we have now that  
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���, �	 ≤ max{���, 9	, ��9, �	} 

≤ max{��-��	, �	, ��-��	, �	} 

= ��-��	, �	 

Which means that � ∈ EF6�, ��-��	, �	7. We have thus shown that  

EF69, ��-�9	, 9	7 ⊆ EF6�, ��-��	, �	7.                              �4.1.1	 

By a similar computation, one can show that  

EFKL R9, �69, -�9	7S ⊆ EFKL R�, �6�, -��	7S.                      �4.1.2	 

equations �4.1.1	 and �4.1.2	 imply that for all EQ ∈ T. , EV ⊆ EQ. In other words. We say that EQ ≼ EV  for all 

EQ ∈ T.. Thus EV is an upper bond in T for the chain T.. We therefore conclude by zorn’s lemma that T has a 

maximal element, say E\, N ∈ �. We shall prove that -�N	 = N. We do this by contradiction.   

Suppose on the contrary that �6N, -�N	7 > 0. 
Let $ ∈ E]�\	, then  

��-�N	, $	 ≤ ��-6-�N	7, -�N		 < �6N, -�N	7 

And  

�6$, -�N	7 ≤ � R-�N	, -6-�N	7S < ��-�N	, N	. 
��$, N	 ≤ max8�6$, -�N	7, ��-�N	, N	> 

< max8�6N, -�N	7, ��-�N	, N	> 

                                                                           = �6N, -�N	7 

Similarly, we can prove that ��N, $	 ≤ ��-�N	, N	. 
The last two inequalities imply that $ ∈ E\ . Therefore E]�\	 ⊆ E\. Indeed, we have that N ∉ E]�\	. This follows 

from the following two inequalities:  

� R-�N	, -6-�N	7S < max _��-�N	, N	, �6N, -�N	7, � R-�N	, -6-�N	7S` 

                                                                   = ��-�N	, N	 

And  

� R-6-�N	7, -�N	S < max _� R-6-�N	7, -�N	S , ��-�N	, N	, �6N, -�N	7` 

                                                                            = �6N, -�N	7 

This however contradicts the maximality of E\. Hence we must have that-�N	 = N. 
Hence proved.  

Theorem 4.2.  Let ��, �	 be a � −hyperconvex ��-ultra-quasi-pseudometric space and a: � → � is a generalized 

nonexpansive mappings. Then either a has atleast one fixed point or there exists a closed ball B radius b such that 

a: � → �. Moreover,���, a�	 = ��a�, �	 = b for each � ∈ �. 
Proof.Let � ∈ �. Let us denote by  

EFQ = EF6�, ��a�, �	7 "=� EFKLQ = EFKL6�, ���, a�	7,  
With ��a�, �	 = ���, a�	. Set  

EQ = EFQ ∩ EFKLQ  

And T ≔ {EQ, � ∈ �}. Define the relation EQ ≼ EV d= T by  

EQ ≼ EV if and only if  EV ⊆ EQ. 
Then �T, ≼	 is a partially ordered set. With their relation and the zorns lemma, that T has a maximal element Ee . 
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Consider now such maximal element Ee .Forany 9 ∈ Ee , we have 

 

��9, a9	 ≤ max{��9, %	, ��%, a%	, ��a%, a9	} = ��%, a%	, 
And  

��a9, 9	 ≤ max{��a9, %	, ��%, a%	, ��a%, 9	} = ��a%, %	.  
Therefore, we conclude that for any ) ∈ EV,   ��%, )	 ≤ ��%, a%	 and ��), %	 ≤ ��a%, %	, which entails that 

EV ≤ Ee and then   a9 ∈ Ee . 
Now if we assume that  

��9, a9	 < ��%, a%	 

Then  

��9, %	 = ��%, a%	 > ��9, a9	 

This implies that % ∈ EFe but % ∉ EFV which is impossible from the maximality of Ee. Thus  

��9, a9	 = ��%, a%	 = b    for any 9 ∈ Ee 

Similarly, if we assume that ��a9, 9	 < ��a%, %	 then  

��%, 9	 = ��a%, %	 > ��a9, 9	 

This implies that  % ∈ EFKLe   but % ∉ EFKLV  which is impossible from the maximality of  Ee. Thus  

��a9, 9	 = ��a%, %	 for any9 ∈ Ee 

Hence  

��9, a9	 = ��%, a%	 = ��a%, %	 = ��a9, 9	 = b 

For any 9 ∈ Ee.  

 

CONCLUSION: 

 In this paper, we proved some new results which extend the uniformity and generalization of several results 

related to fixed point theorems spherically completeness of q-hyperconvexity in ��-quasi-metric space.  
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ABSTRACT : 

The augmented Zagreb index of a graph G=(V, E) is defined by ������ = ∑ 	 
����
����

����

��������

��∈���� . In 

this paper, we compute the augmented Zagreb index and their polynomials of certain classes of 

windmill graphs like French windmill graph, Dutch windmill graph, Kulli cycle windmill graph and 

Kulli path windmill graph. 
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Key words and phrases: Augmented-Zagreb indices; French windmill graph; Dutch windmill graph; Kulli cycle 

windmill graph and Kulli path wind mill graph. 

 

1. INTRODUCTION 

 Throughout this paper, we considered only simple graphs and, the collection of vertices and the set of edges are 

denoted by V(G) and E(G), respectively. The number of vertices of a graph adjacent to v is the degree of a vertex v 

of G, denoted by �����. The reader may refer [9], for undefined notations and terminologies. 

Chemical graph theory is a branch of Mathematical chemistry which has an important effect on the development of 

the chemical sciences. A single number that can be used to characterize some property of the graph of a molecular 

is called a topological index for that graph. There are numerous topological descriptors that have found some 

applications in theoretical chemistry, especially in QSPR/QSAR research. 

The first two Zagreb indices was introduced by  Gutman and  Trinajstic [8] to take account of the contributions of 

pairs of adjacent vertices. In [3], Furtula et al., introduced augmented Zagreb index (AZI), defined as                     

������ = ∑ 	 �������� �
�����
��� ��!�"

� ∈#��� and is a degree based topological invariant to a well established for its 

better correlation properties and we refer [5]. Recently many other indices were studied, for example, in                    

[1], [2] ,[3], [7], [12], [13]. 

In the following, we make use of some necessary calculations for computing the Zagreb indices and their 

polynomials of G, we make use of the vertex set partition  $% = &� ∈ $: ����� = ()  and edge set partitions *+ = &, = -� ∈ $: ���-� + ����� = /) and *0∗ = &, = -� ∈ *: ���-������ = 2). 

 

2. FRENCH WINDMILL GRAPH 

The French windmill graph 34�5�
 is the graph by taking 6 ≥ 2 copies of the complete graph 94; : ≥ 2 with a 

vertex in common. This graph is shown in Figure-1. The French windmill graph 3!�5�
 is called a star graph, the 
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French windmill graph 3"�5�
 is called a friendship graph and the French windmill graph 3"�!�

 is called a butterfly 

graph. Furthert note that 3"�5�
 is same as ;"�5�

. For more details, we refer [6]. 

 

Figure 1. French windmill graph 34�5�
. 

 

Let � = 34�5�
, where 34�5�

 is a French windmill graph. By algebraic method, we get |$���| = 6�: − 1� + 1 and 

|*���| = 54�4�?�
! . 

We have two partitions of the vertex set V (G) as follows:      $4�? = &� ∈ $���: ����� = : − 1); |$4�?| = 6�: − 1�, and $�4�?�5 = &� ∈ $���: ����� = �: − 1�6); @$�4�?�5@ = 1. 

Also we have two partitions of the edge set E(G) as follows:     *!�4�?� = *�4�?�A∗ = &-� ∈ *���: ���-� = ����� = : − 1); 

  @*!�4�?�@ = B*�4�?�A∗ B = 6 	4�4�?�
! − �: − 1�� = 5C4A�"4
!D

! , and 

 *�4�?��5
?� = *5�4�?�A∗ = &-� ∈ *���: ���-� = : − 1, ����� = �: − 1�6) ; @*�4�?��5
?�@ = B*5�4�?�A∗ B =
�: − 1�6. 

 

Theorem 2. 1. An augmented Zagreb index and their polynomial of French windmill graph are  

                     ��� F34�5�G = 6�: − 1�H 	 ?
?I�4�!�A + 5J

K�4�?��5
?��!LJ� and 

                 ��� F34�5�, MG = 
5�4�?�

! N�: − 2�MO�PQR�A
A�PQA�SJ + 2MO T�PQR�A

�PQR��TUR�QASJV. 

  Proof. Let � = 34�5�
 be a French windmill graph. Consider 

                    ��� F34�5�G = ∑ 	 �������� �
�����
��� ��!�"

� ∈#���  

                                        = ∑ 	 �������� �
�����
��� ��!�"

#A�PQR� + ∑ 	 �������� �
�����
��� ��!�"�4�?��5
?�  

                                        = 
?
! 6�:! − 3: + 2� 	 �4�?��4�?�

�4�?�
�4�?��!�"
+ 6�: − 1� 	 �4�?��4�?�5�4�?�
�4�?�5�!�"

 

                                        = 
?
! 6�: − 1��: − 2� 	 �4�?�X

Y�4�!�J� + 6�: − 1� 	 �4�?�X5J
K�4�?��5
?��!LJ� 

                                        = 
5�4�?�Z�4�!�

?I�4�!�J  + 
5J�4�?�Z

K�4�?��5
?��!LJ 

                                        = 6�: − 1�H 	 ?
?I�4�!�A + 5J

K�4�?��5
?��!LJ�. 
 Now, for augmented-Zagreb polynomial of 34�5�

, we have 

                 ��� F34�5�, MG = ∑ MO [��\�[��]�[��\�U[��]�QASJ
� ∈#  
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                                        = ∑ MO [��\�[��]�[��\�U[��]�QASJ
 #A�PQR� + ∑ M^ [��\�[��]�[��\�U[��]�QA_J

#�PQR��TUR�  

                                        = 
?
! 6�:! − 3: + 2�MO�PQR�A

A�PQA�SJ
+ 6�: − 1�MO T�PQR�A

�PQR��TUR�QASJ
 

                                        = 
?
! 6�: − 1� N�: − 2�MO�PQR�A

A�PQA�SJ + 2MO T�PQR�A
�PQR��TUR�QASJV. 

          

Corollary 2.1. An augmented-Zagreb index and their polynomial of a friendship graph 3"�5�
 are  ��� F3"�5�G = 

246 and ��� F3"�5�, MG = 36MY. 

Corollary 2.2. An augmented-Zagreb index and their polynomial of a butterfly graph 3"�!�
 are ��� F3"�!�G = 48 and 

��� F3"�!�, MG = 6MY. 

 

3. DUTCH WINDMILL GRAPH 

The Dutch windmill graph ;4�5�
 is the graph obtained by taking 6 copies of the cycle c4 with a vertex in common. 

This graph is shown in Figure-2. The Dutch windmill graph ;4�5� = 34�5�
 is called a friendship graph. For more 

details on windmill graph, see [6]. 

 

Figure 2. Dutch windmill graph ;4�5�
. 

 

Let � = ;4�5�
, where ;4�5�

 is a dutch windmill graph. By algebraic method, we get |$���| = 6�: − 1� + 1                   

and |*���| = 6:.  

We have two partitions of the vertex set V(G) as follows: $! = &� ∈ *���: ����� = 2);  |$!| = �: − 1�6, and $!5 = &� ∈ $���: ����� = 26);  |$!5| = 1. 

Also we have two partitions of the edge set *��� as follows: *d = *d∗ = &-� ∈ *���: ���-� = ����� = 2); |*d| = |*d∗| = �: − 2�6, and *!5
! = *!�!5�∗ = &-� ∈ *���: ���-� = 2, ����� = 26);|*!5
!| = @*!�!5�∗ @ = 26. 

 

Theorem 3.1. An augmented-Zagreb index and their polynomial of dutch windmill graph are 

                ��� F;4�5�G = 86K26 + : − 2L and ��� F;4�5�, MG = 6: MY. 

               

Proof.  Let � = ;4�5�
 be a dutch windmill graph. Consider 

                ��� F;4�5�G = ∑ 	 �������� �
�����
��� ��!�"

� ∈#  
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                                   = ∑ 	 �������� �
�����
��� ��!�" 

#e  + ∑ 	 �������� �
�����
��� ��!�"

#ATUA  

                                   = �: − 2�6 	 !×!
!
!�!�"

 + 26 	 !×!5
!
!5�!�"

 

                                   = 86�: − 2� + 166                  

                                   = 86K26 + : − 2L           
                             

 Now, for an augmented-Zagreb polynomial of a ;4�5�
, we have 

            ��� F;4�5�, MG = ∑ MO [��\�[��]�[��\�U[��]�QASJ
� ∈�  

                                   = ∑ MO [��\�[��]�[��\�U[��]�QASJ
#e + ∑ MO [��\�[��]�[��\�U[��]�QASJ

#ATUA  

                                   = �: − 2�6 MY + 26 MY 

                                   = 6: MY 

 

4.  KULLI CYCLE WINDMILL GRAPH 

The Kulli cycle windmill graph c4
?�5�
 is the graph obtained by taking m copies of the graph 9?  + c4 for : ≥ 3 with 

a vertex 9? in common. This graph is shown in Figure-3. This type of windmill graph is initiated by Kulli et al., in K10L. 

 

Figure 3. Kulli cycle windmill graph c4
?�5�
. 

 

Let � = c4
?�5�
, where c4
?�5�

 is a Kulli cycle windmill graph. By algebraic method, we get |$���| = 6: + 1 and 

|*���| = 26:.  

We have two partitions of the vertex set V(G) as follows: 

$" = &� ∈ $���: ����� = 3); |$"| = 6:, and 

$54 = &� ∈ $���: ����� = 6:); |$54| = 1. 

Also we have two partitions of the edge set E(G) as follows: 

*I = &-� ∈ *���: ���-� = ����� = 3); |*I| = 6:, and 

*54
" = &-� ∈ *���: ���-� = 6:, ����� = 3); |*54
"| = 6:. 

Theorem 4.1. An augmented-Zagreb index and their polynomial of a Kulli cycle windmill graph are 

                               ��� Fc4
?�5�G = 276: 	!H
Id + �54�J

�54
?�J� and  

                           ��� Fc4
?�5� , MG = 6: MZAiXe + 6: M AZTPJ
�TPUR�J. 

Proof.  Let � = c4
?�5�
, where c4
?�5�

 is a Kulli cycle windmill graph. Consider 

                        ��� Fc4
?�5�G = ∑ 	 �������� �
�����
��� ��!�"

� ∈#  
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                                           = ∑ 	 �������� �
�����
��� ��!�"

#X  + ∑ 	 �������� �
�����
��� ��!�"

54
"  

                                           = 6: 	 "×"
"
"�!�"

 + 6: 	 "54
54
"�!�"

 

                                           = 6: 	j
d�"

 + 6: 	 "54
54
?�"

 

                                           = 276: 	!H
Id + �54�J

�54
?�J� 
Now, for an augmented-Zagreb polynomial of a c4
?�5�

, we have 

                   ��� Fc4
?�5�, MG = ∑ MO [��\�[��]�[��\�U[��]�QASJ
#X  + ∑ MO [��\�[��]�[��\�U[��]�QASJ

#TPUJ  

                                          = 6: MZAiXe  + 6: M AZ�TP�J
�TPUR�J 

 

5. KULLI PATH WINDMILL GRAPH 

 The Kulli path windmill graph k4
?�5�
 is the graph obtained by taking m copies of the graph 9? + k4 for : ≥ 2 

with a vertex 9? in common. This graph is shown in Figure-4. This type of windmill graph is initiated by Kulli                

etal., in K11L. 

 

Figure 4. Kulli path windmill graph k4
?�5�
. 

 

Let � = k4
?�5�
, where k4
?�5�

 is a Kulli path windmill graph with 6 ≥ 2 and : ≥ 4. By algebraic method, we get |$���| = 6: + 1 and |*���| = 26: − 6.  

We have three partitions of the vertex set V(G) as follows: $! = &� ∈ $���: ����� = 2); |$"| = 26, $" = &� ∈ $���: ����� = 3); |$"| = 6: − 26, and $54 = &� ∈ $���: ����� = 6:); |$54| = 1. 

Also we have four partitions of the edge set  E(G) as follows: *l = &-� ∈ *���: ���-� = 2, ����� = 3); |*54
!| = 26, *I = &-� ∈ *���: ���-� = 3, ����� = 3); |*54
"| = 6: − 36, *54
! = &-� ∈ *���: ���-� = 6:, ����� = 2); |*l| = 26, and *54
" = &-� ∈ *���: ���-� = 6:, ����� = 3); |*l| = 6: − 26. 

 

Theorem 5.1. An augmented-Zagreb index and their polynomial of a Kulli path windmill graph are  

                    ��� Fk4
?�5�G = 326 + �6: − 36� H!j
Id  + �6: − 26� 	 "54

54
?�"
 and  

                ��� Fk4
?�5�, MG = 46MY + �6: − 36�MZAiXe  + �6: − 26�M	 JTPTPUR�J
. 
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Proof. Let � = k4
?�5�
, where k4
?�5�

  is a Kulli cycle windmill graph with 6 ≥ 2 and : ≥ 4. Consider 

                  ��� Fk4
?�5�G = ∑ 	 �������� �
�����
��� ��!�"

� ∈#  

                                     = ∑ 	 �������� �
�����
��� ��!�"

#m  + ∑ 	 �������� �
�����
��� ��!�"

#X   

                                     +  ∑ 	 �������� �
�����
��� ��!�"

#TPUA + ∑ 	 �������� �
�����
��� ��!�"

#TPUJ  

                                     = 26 	 !×"
"
!�!�"

 + �6: − 36� 	 "×"
"
"�!�"

  

                                     + 26 	 !54
54
!�!�"

 + �6: − 26� F "54
54
"�!G"

 

                                     = 326 + �6: − 36� H!j
Id  +  �6: − 26� F "54

54
?G"
. 

                           

Now, for an augmented-Zagreb polynomial of a k4
?�5�
, we have 

              ��� Fk4
?�5�, MG = ∑ MO [��\�[��]�[��\�U[��]�QASJ
� ∈#  

                                     = ∑ MO [��\�[��]�[��\�U[��]�QASJ
#m  +∑ MO [��\�[��]�[��\�U[��]�QASJ

#X  

                                     + ∑ MO [��\�[��]�[��\�U[��]�QASJ
#TPUA + ∑ MO [��\�[��]�[��\�U[��]�QASJ

#TPUJ  

                                     = 46MY + �6: − 36�MZAiXe  + �6: − 26�M	 JTPTPUR�J
.  
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ABSTRACT : 

There are a variety of ways to associate directed or undirected graphs to a group. It may be interesting to 

investigate the relations between the structure of these graphs and characterizing certain properties of the group 

in term of some properties of the associated graphs. The Power graph гp(G), of a group G is the graph whose 

vertex set is the group element and two elements are adjacent if one is the power of other. In this paper, we 

investigate some properties of the power graph of Zn and Cn of prime order. 

Keywords: Finite graph, complete graph, connected graph, power graph, regular graph. 

 

1.   INTRODUCTION 

 The investigation of graphs related to group of prime order of Zn and Cn ,  is an important topic in algebraic 

structure .This paper is devoted to the study of power graph which were introduced by Kelarev Quinn. Let us 

review some facts of power graph. In this paper, we represent finite group in the form of a graph such that one is 

power of other, then these graphs are called power graph. In this paper, we shall study power graphs of Zn and Cn of 

prime order. 

 

2. POWER GRAPH OF Zn OF PRIME ORDER 

2.1 Power graph of group Z2 :  

Let G = Z2 = {0, 1} be the group under addition modulo 2. Then the power graph of Z2 is: 

 

We have some following properties about this graph:-       

1. This power graph is finite graph. 

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph. 

5. The chromatic number of this graph is 2. 

2.2   Power graph of group Z3 : 

Let G = Z3 = {0, 1, 2} be the group under addition modulo 3. Then the power graph of Z3 is:- 
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We have some following properties about this graph:-  

1. This power graph is finite graph.  

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph. 

5. This power graph is unicyclic graph. 

6. The chromatic number of this graph is 3. 

2.3   Power graph of group Z5 : 

Let G = Z5 = {0, 1, 2, 3, 4} be the group under addition modulo five. Then the power graph of the group Z5 is:- 

 
We have some following properties about this graph:-  

1. This power graph is finite graph.  

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph. 

5. The chromatic number of this graph is 5. 

2.4   Power graph of group Z7 : 

Let G = Z7 = {0, 1, 2, 3, 4, 5, 6} the group under addition modulo 7. Then the power graph of the group Z7 is:- 

 
We have some following properties about this graph:-  

1. This power graph is finite graph.  

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph.  

5. The chromatic number of this graph is 7. 
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3.   POWER GRAPH OF CN OF PRIME ORDER 

3.1   Power graph of group C2 : 

Let G = C2 = {g | g
2
 = I} the cyclic group of order 2 under multiplication. Then the power graph of C2 is:- 

We have, G= C2 = { I , g } 

 
We have some following properties about this graph:-  

1. This power graph is finite graph.  

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph. 

5. The chromatic number is 2. 

3.2   Power graph of cyclic group C3 : 

Let G = C3= {g | g
3
 = 1} be the cyclic group of order 3 under multiplication. Then the  

power graph of C3 = { I , g ,g
2
} is:-     

 

We have some following properties about this graph:-  

1. This power graph is finite graph.  

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph. 

5. This power graph is unicyclic graph. 

6. The chromatic number of this graph is 3. 

3.3   Power graph of cyclic group C5: 

Let G = C5 = {g | g
5
 = 1} be the cyclic group of order 5 under multiplication. Then the power graph of C5 is:- 

We have, G = C5 = { I , g ,g
2
 , g

3 
, g

4
} 

We have some following properties about this graph:-  

1. This power graph is finite graph.  

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph. 

5. The chromatic number is 5. 
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3.4   Power graph of cyclic group C7 : 

Let G = C7 = {g | g
7
 = 1} be the cyclic group of order 7 under multiplication. Then the power graph of C7 is:-  

 
We have some following properties about this graph:-  

1. This power graph is finite graph.  

2. This power graph is connected graph. 

3. This power graph is regular graph. 

4. This power graph is complete graph. 

5. The chromatic number of this graph is 7. 

 

4. CONCLUSION :  

 From the above power graphs of Zn  and Cn , we conclude that the power graph of finite group of prime order of 

Zn and Cn satisfies the properties of finite graph, connected graph, regular graph and complete graph. And using 

graph we also find out their chromatic number. Thus, we can say that power graph of finite group Zn  and Cn of 

prime order is finite, connected, regular, complete and the chromatic number is according to prime number ‘n’. 
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ABSTRACT : 

In this paper, the stability of cubic functional equation  )(1)()]()([1)1)((=)()( 2
yxfkkyfxfkkkyxfykxf −−−−+−+−+   

(where k is a positive integer greater than 2 ) using direct and fixed point method in random normed spaces has 

been proved.  

Keywords : Hyers-Ulam-Rassias stability, cubic functional equation and random normed spaces.  

Mathematical subject classification- 39B72, 47H09. 

 

1. INTRODUCTION 

 In 1940  Ulam[3]  first raised a question of stability of group homomorphisms, which is as following:”When is 

it true that a function which approximately satisfies a functional equation F  must be close to an exact solution of   

F  ?”. If the problem accepts a solution,then the equation F  is said to be stable. 

D. H. Hyers [13]  answered the problem of Ulam by assuming the groups as Banach spaces.Then Th. M. Rassias 

[22]  
gave a generalized version of the theorem of Hyers for approximately linear mappings. Gavruta [11]  proved a 

generalization of Rassias theorem by introducing a general control function ),( yxφ .  

The functional equation )(12)(2)(2=)(2)(2 xfyxfyxfyxfyxf +−++−++  is said to be the cubic 

functional equation since 
3

cx  is its solution. Every solution of the cubic functional equation is said to be cubic 

mapping. The stability problem for the cubic functional equation was proved by Jun and Kim [14]  for mappings 

YXf →: where X is a real normed space and Y is Banach space.They proved that a function f between X and Y 

is solution of above cubic functional equation if and only if there exists a unique function C: X × X × X → Y such 

that f(x) = C(x,x,x) for all x ϵ X and C is symmetric for every fixed one variable and additive for fixed two 

variables.  

In this paper, we introduce the following cubic functional equation  

 )(1)()]()([1)1)((=)()( 2
yxfkkyfxfkkkyxfykxf −−−−+−+−+  (1) 

And our main aim is to prove the generalized Hyers-Ulam-Rassias stability of it in random normed spaces,where k 

is a positive integer greater than 2 .  

 

2.  PRELIMINARIES 

  In this paper, we will use the usual terminologies, notations and conventions of the theory of random normed 

spaces as in [1,16,17,23,24].The space of all probability distribution functions is denoted by 
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{ :[0,1]},{: →+∞−∞∪=∆
+

RF  F is left-continuous and non-decreasing on R  and 0=(0)F , }1=)(+∞F , the 

subset 
++

∆⊆D  is the set  

{ },1=)(:= +∞∆∈
−++

FlFD  

where )(xFl
−

denotes the left limit of the function f at the point x that is )(=)( tflimxfl
xt −

→

−
.The space 

+
∆  is 

partially ordered by the usual pointwise ordering of functions, that is, GF ≤  if and only if )()( tGtF ≤  for all 

Rt ∈ .For all a ≥  0, any element of 
+

∆  is the distribution function aε  given by  

��(�)=�0, 
� � ≤ �
1, 
� � > �� 

and we can easily see that )(0 tε  is its maximal element.  

2.1  Definition[16] 

A function T : [0,1] × [0,1] → [0,1] is a continuous triangular norm (briefly, a continuous t-norm) if T satisfies the 

following conditions:   

•  T is commutative and associative;  

•  T is continuous;  

•  T aa =,1)(  for all [0,1]∈a ;  

•  T ),(),( dcTba ≤  whenever ca ≤  and db ≤  for all [0,1],,, ∈dcba .  

Some examples of continuous t-norms are 1,0}{=),( −+ yxmaxyxTL (the Lukasiewicz t-norm) xyyxTP =),(  

and ),(=),( yxminyxTM .We know that, if T is a t-norm and }{ nx  are given numbers in [0,1], then i

n

i xT 1=  is 

defined recursively by 1

1

1= xTi  and ),(= 1

1=1= ni

n

ii

n

i xxTTxT
−

 for 2≥n . ini xT
∞

=  is defined as ini xT
+

∞

1= .Also,for the 

Lukasiewicz t-norm the following implication holds:  

∞−⇔∑
∞

+

∞

∞→
<)(11=)(

1=

1= n

n

iniLn xxTlim  

2.2  Definition [24] 

A random normed space (RN-space) is a triplet ),,( TX Φ , where X is a vector space, T is a continuous t-norm and 

+

→Φ DX:  is a mapping such that the following conditions hold:   

•  )(=)( 0 ttx εΦ  for all 0>t  if and only if 0=x ;  

•  |)|/(=)( att xax ΦΦ  for all XxaRa ∈≠∈ 0,,  and 0≥t ;  

•  ))(),(()( stTst yxyx ΦΦ≥+Φ
+

, for all Xyx ∈, and 0, ≥st .  

For every normed space ||).||,(X  we can define a random normed space ),,( MTX Φ  where  

||||
=)(

xt

t
tx

+

Φ  

for all 0>t .This space is called the induced random normed space.  

 

2.3  Definition [23] 

Let ),,( TX Φ  be an RN-space.   

• A sequence }{ nx  in X is said to be convergent to Xx∈  if for all 0>ε  and 0>λ  , there exist positive 

integer N such that λε −Φ
−

1>)(x
n

x  whenever Nn ≥ .  

•  A sequence }{ nx  in X is said to be cauchy sequence in X if for all 0>ε  and 0>λ  , there exist positive 

integer N such that λε −Φ
−

1>)(
m

x
n

x  whenever Nmn ≥≥ .  
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• The RN-space ),,( TX Φ  is said to be complete if every Cauchy sequence in X is convergent.  

 2.4  Theorem [23] 

If ),,( TX Φ  is RN-space and }{ nx  is a sequence such that xxn → , then )(=)( ttlim x
n

xn ΦΦ
∞→

. 

2.5  Definition[15] 

Let X be a non-empty set. A function ][0,: ∞→× XXd  is called a complete generalized metric on X if d 

satisfies the following conditions:   

•  d(x,y)= 0  if and only if x = y for all x,y ∈ X;  

• xydyxd ,(=),( ) for all Xyx ∈, ;  

• ),(),(),( zydyxdzxd +≤  for all Xzyx ∈,,   

• Every d-Cauchy sequence in X is d-convergent, i.e. ),(, mnnm xxdlim
∞→

 =  0  for a sequence Xxn ∈  (n= 

1,2,...) implies the existence of an element x  ∈  X  with ),( nn xxdlim
∞→

 =  0 .  

The ordered pair ),( dX  is called complete generalized metric space.It differs from the usual complete metric space 

by the fact that not every two points in X have necessarily a finite distance.  

2.6  Theorem [6] 

 Let ),( dX  be a complete generalized metric space and XXJ →:  a strictly contractive mapping with Lipschitz 

constant 1<L . Then, for all Xx∈ , either ∞
+

=),(
1
xJxJd

nn
 for all nonnegative integers n  or there exists a 

positive integer 0n  such that   

• ∞<
+

),(
1
xJxJd

nn
for all 0nn ≥ ;  

•  the sequence{ J
n
x} converges to a fixed point y

*
 of J;   

• y
*
 is the unique fixed point of J in the set }<),(:{= 0

∞∈ yxJdXyY
n

;   

• ),())(1/(1) *y,( JyydLyd −≤  for all Yy ∈ .  

 

The generalised Hyers-Ulam-Rassias stability of cubic functional equation in random normed spaces have been 

broadly studied by various authors in[4,5,8,10].There are many spaces namely Non-Archimedean spaces,Quasi-

Banach spaces,fuzzy normed spaces etc. which attracts authors [7,9,12-14,17,18,20,22,25] to establish stability 

results of different functional equations.In this paper we work with cubic functional equation (1) in random normed 

spaces. 

 

3.   STABILITY OF FUNCTIONAL EQUATION (1) IN RANDOM NORMED SPACE : A DIRECT METHOD 

 In this section, using direct method, we will prove the generalized Hyers-Ulam-Rassias stability of cubic functional 

equation (1) in random normed spaces.Let us define a function fD  as follows:  

).(1)()]()([1)1)(()()(=),(
2

yxfkkyfxfkkkyxfykxfyxD f −−+−+−−+−+  

3.1  Theorem 

 Let X be a real linear space, ),,( TZ Φ  be a random normed space and ZX →
2

:φ  be a function such that for 

some 
3

<<0 kµ   

                 )()( ,0)(,0)( tt xkx µφφ
Φ≥Φ  (2) 

 and  

                1=)( 3

),(
tklim

n

y
n

kx
n

k
n

φ

Φ
∞→

 (3) 
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for all 0.>, tXx ∈  If ),,( TY ζ  be a complete random normed space and YXf →:  is a mapping with f(0)=0 

such that for all Xyx ∈,  and 0>t   

               )()( ),(),( tt yxyx
f

D φ
ζ Φ≥  (4) 

 then the limit 
n

n

n
k

xkf
limxC

3

)(
=)(

∞→
 exists for all Xx∈  and defines a unique cubic mapping YXC →:  such 

that  

              )).)((()(
3

,0)(

1

0=)()( tkTt x

n

mxCxf µζ
φ

−Φ≥
−

−
 (5) 

  

Proof: Existence- By putting 0=y  in (4)  we get that,  

              )()( 3

,0)(
)(

3

)( tkt x
xf

k

kxf φ
ζ Φ≥

−

 (6) 

 for all Xx∈ .Replacing x  by xk
n

 in (6)  and using (2) , we get  

          )()()(
33

,0)(

33

,0)(

3

)(

33

)1( n

n

x

n

xnk

nk

xnkf

nk

xnkf

tk
tkt

µ
ζ

φ
φ

+

+

−
+

+
Φ≥Φ≥  (7) 

 Since,  

            )
)()(

(=)(
)(

333

11

0=
3 m

m

m

mn

m
n

n

k

xkf

k

xkf
xf

k

xkf
−−

+

+−

∑  (8) 

 therefore we can say that  

             ))(()(
33

3

)(

33

)1(

1

0=33

1

0=)(
3

)( +

−
+

+

−

+

−

−

≥∑ m

m

mk

xmkf

mk

xmkf

n

mm

mn

mxf
nk

xnkf k

t
T

k

t µ
ζ

µ
ζ  

 

                           )).(( ,0)(

1

0= tT x

n

m φ
Φ≥

−

 (9) 

 This implies that  

             )).(()(

33

1

0=

,0)(

1

0=
)(

3

)(

+

−

−

−

∑

Φ≥

m

mn

m

x

n

m
xf

nk

x
n

kf

k

t
Tt

µ
ζ

φ
 (10) 

 Replacing x  by xk
p

 in (10) , we get  

 ))(()(

1)3(

1

0=

,0)(

1

0=

3

)(

)3(

)(

++

−

−

−
+

+

∑

Φ≥

pm

mn

m

x
p

k

n

m

p
k

x
p

kf

pn
k

x
pn

kf

k

t
Tt

µ
ζ

φ

 

 

               ))((

1)3(

1

0=

,0)(

1

0=

++

+−

−

∑

Φ≥

pm

pmn

m

x

n

m

k

t
T

µ
φ

 

 

                            )).((=

1)3(

1

=

,0)(

1

0=

+

−+

−

∑

Φ

m

mpn

pm

x

n

m

k

t
T

µ
φ

 (11) 
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 Since,  

                1,=)(

1)3(

1

=

,0)(,

+

−+∞→

∑

Φ

m

mpn

pm

xnp

k

t
lim

µ
φ

 (12) 

 therefore }
)(

{
3n

n

k

xkf
 is a Cauchy sequence in complete random normed space ),,( TY ζ , so there exists some point 

YxC ∈)(  such that  

                  ).(=}
)(

{
3

xC
k

xkf
lim

n

n

n ∞→
 

Fix Xx∈  and put 0=p  in (11) .Then we get  

              ))(()(

33

1

0=

,0)(

1

0=
)(

3

)(

+

−

−

−

∑

Φ≥

m

mn

m

x

n

m
xf

nk

x
n

kf

k

t
Tt

µ
ζ

φ
 (13) 

 and therefore,for each 0>ε ,we can say  

 ))(),(()(
)(

3

)(

3

)(
)(

)()( tTt
xf

nk

xnkf

nk

xnkf
xC

xfxC
−−

−
≥+ ζεζεζ  

 

                          ))).((),((

33

1

0=

,0)(

1

0=

3

)(
)(

+

−

−

−

∑

Φ≥

m

mn

m

x

n

m

nk

x
n

kf
xC

k

t
TT

µ
εζ

φ
 (14) 

 Taking the limit as ∞→n , we get  

           )).)((()(
3

,0)(

1

0=)()( tkTt x

n

mxfxC µεζ
φ

−Φ≥+
−

−
 (15) 

 Since ε  is arbitrary, by taking 0→ε  in (15) , we get  

              )).)((()(
3

,0)(

1

0=)()( tkTt x

n

mxfxC µζ
φ

−Φ≥
−

−
 (16) 

 Replacing x  by xk
n

 and y  by yk
n

 in (4) ,we get  

            )()(
3

),(

3

),(
tkt

n

y
n

kx
n

k

n
k

y
n

kx
n

k
f

D φ

ζ Φ≥  (17) 

 for all 0.>,, tXyx ∈ Therefore, by taking ∞→n  in (17)  and using (3)  we have  

         ).(1)()]()([1)1)((=)()(
2

yxCkkyCxCkkkyxCykxC −−−−+−+−+  

Uniqueness: To prove the uniqueness of the mapping C, we suppose that YXD →:  is another mapping which 

satisfies (5) .Since f  is a cubic mapping, therefore C and D are also cubic.Therefore for all Nn∈  and every 
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3
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nn
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. Thus,we have for all 0>t ,  
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So, )(=)( xDxC  for all Xx∈ .Hence the proof.  

3.2  Corollary 

Let X be a real linear space, ),,( MTZ Φ  be a random normed space and ZX →
2

:φ  be a function such that for 

some ,<<0
3

kµ   

                   )()( ,0)(,0)( tt xkx µφφ
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 and  
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 (19) 

 for all 0.>, tXx ∈  If ),,( MTY ζ  is a complete random normed space and YXf →:  is a mapping with f(0)=0 

such that for all Xyx ∈,  and 0>t   
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f

D φ
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 then the limit 
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n

n
k
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∞→
 exists for all Xx∈  and defines a unique cubic mapping YXC →:  such 

that  
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φ
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 (21) 

  

Proof: The proof can be easily generated by taking T-norm as minimum T-norm in above theorem.  

3.3  Corollary 

Let X be a real linear space, ),,( MTZ Φ  be a random normed space and ),,( MTY ζ  be a complete random normed 

space.Let (0,1)∈p  and Zz ∈0 .If YXf →:  is a mapping with 0=(0)f  satisfying  
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for all Xyx ∈,  and 0.>t  Then the limit 
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n
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for all Xx∈  and 0.>t   

Proof: Let ZX →
2

:φ  be defined as 0)||||||(||=),( zyxyx pp
+φ .Then the proof follows from corollary (3.2)  

by taking 
p

k
3

=µ .  

3.4  Corollary 

Let X be a real linear space, ),,( MTZ Φ  be a random normed space and ),,( MTY ζ  be a complete random normed 

space.Let Zz ∈0  and YXf →:  is a mapping with 0=(0)f  satisfying  
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for all Xyx ∈,  and 0.>t  Then the limit 
n

n

n
k

xkf
limxC

3

)(
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∞→
 exists for all Xx∈  and defines a unique cubic 

mapping YXC →:  such that  
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0
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− δ
ζ  (25) 

for all Xx∈  and 0.>t   

Proof: Let ZX →
2

:φ  be defined as 0=),( zyx δφ .Then the proof follows from corollary 3.2  by taking 1=µ .  

3.5  Theorem 

Let X be a real linear space, ),,( TZ Φ  be a random normed space, and ZX →
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:φ  be a function such that,for 
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Proof: Existence- putting 0=y  in (4)  ,we get that  
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 This implies that  
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point YxC ∈)(  such that  

                 ).(=)}({ 3 xC
k

x
fklim

n

n

n ∞→
 

Fix Xx∈  and put 0=p  in (34) .Then we get  
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 and therefore for each 0>ε  ,we can say  
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 Taking the limit as ∞→n , we get  
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 Since ε  is arbitrary, by taking 0→ε  in (38) , we get  
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 Replacing x  by 
nk

x
 and y  by 

nk

y
 in (4) ,we get  
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 for all 0.>,, tXyx ∈ Therefore, by taking ∞→n  in (40)  and using (27) , we have  
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The proof of uniqueness of C(x) can be easily generated from proof of theorem (3.1).  

3.6  Corollary 

Let X be a real linear space, ),,( MTZ Φ  be a random normed space and ZX →
2

:φ  be a function such that,for 

some 
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 for all 0.>,, tXyx ∈  If ),,( MTY ζ  is a complete random normed space and YXf →:  is a mapping with 

0=(0)f  and satisfying (4)  for all Xyx ∈,  and 0>t , then the limit )(=)( 3

n

n

n
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 exists for all 

Xx∈  and defines a unique cubic mapping YXC →:  such that  
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Proof: The proof can be easily generated by taking T-norm as minimum T-norm in above theorem.  

3.7  Corollary 

Let X be a real linear space, ),,( MTZ Φ  be a random normed space, and ),,( MTY ζ  be a complete random normed 

space.Let 1>p  and Zz ∈0 .If YXf →:  is a mapping with 0=(0)f  satisfying (22).Then the limit 
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Proof: Let ZX →
2

:φ  be defined as 0)||||||(||=),( zyxyx pp
+φ .Then the proof follows from corollary 3.6  by 

taking 
p

k
3

=
−

µ . 

 

3.8  Corollary 

Let X be a real linear space, ),,( MTZ Φ  be a random normed space and ),,( MTY ζ  be a complete random normed 

space.Let Zz ∈0  and ZXf →:  is a mapping with 0=(0)f  satisfying (24). Then the limit 
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 exists for all Xx∈  and defines a unique cubic mapping YXC →:  such that  
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0
)()( tkkt zxCxf −Φ≥

− δ
ζ  (45) 

for all Xx∈  and 0.>t   

Proof: Let ZX →
2

:φ  be defined as 0=),( zyx δφ .Then the proof follows from corolarry 3.6  by taking 

4
1/= kµ .  

3.9  Example 

 Let ||).||,(X  be a Banach Algebra and  
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We note that ),( yxφ
Φ  is a distribution function and  
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for all Xyx ∈,  and all 0>t .We assert that ),,( LTX ζ  is an RN-space.We know,   
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 It is also easy to note that ),,( LTX ζ  is complete, since  
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for all Xyx ∈,  and 0>t  and ||).||,(X  is complete.Define XXf →: , ||,||=)( 0

3 xxxf +  where 0x  is a unit 

vector in X.We can easily calculate that, for all Xyx ∈,   
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Since,  
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Thus all the conditions of Theorem (3.1)  hold,thus we obtain a unique cubic mapping XXC →:  such that for 

all Xx∈  and 0>t  we have,  
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4.  STABILITY OF FUNCTIONAL EQUATION (1) IN RANDOM NORMED SPACE: A FIXED POINT APPROACH 

In this section, the generalized Hyers-Ulam-Rassias stability of cubic functional equation (1) in random normed 

spaces will be proved using fixed point method.  

4.1  Theorem 

Let X  be a real linear space, ),,( MTY ζ  a complete RN-Space and 
+

→Φ DX 2:  be a mapping such that for 

some 
3

1
<<0

k
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            )()(
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),( tt
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xyx µΦ≤Φ  (46) 

 for all Xyx ∈,  and 0>t . Let YXf →:  be a mapping with 0=(0)f  and satisfying  
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 for all Xyx ∈,  and 0>t .Then, for all Xx∈ , )(=)( 3
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 for all Xx∈  and 0>t .  

Proof: Putting 0=y  in (47) and replacing x  by 
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x
, we have  
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 for all Xx∈  and 0>t . Consider the set  

             0}=(0);:{= gYXgS →  (50) 

 and the generalised metric d  in S  is defined by  

       0}>,)()(:][0,{=),( ,0)()()( tXxtctcinfhgd xxhxg ∈∀Φ≥∞∈
−

ζ  (51) 

 where inf  +∞∅ = . Then, as in the proof of[19,Lemma 2.1],we can show that ),( dS  is a generalised complete 

metric space.Now, let us define an operator SS →∆ :  such that  
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x
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 for all Xx∈ .We assert that ∆  is strictly contractive on S  . 

Given Shg ∈, , let ][0,∞∈c  be an arbitrary constant with chgd <),(  that is  
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for all Xx∈  and 0>t . Thus chgd <),(  implies that  
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 for all Xyx ∈,  and 0>t  and n 1≥ .Taking limit ∞→n  in (62), we get  
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.Thus, the mapping YXC →:  is cubic. Hence the proof.  

4.2  Corollary 

Let X  be a real linear space, 0≥ϑ  and p ∈  )(1,∞ .Let YXf →:  be a mapping with 0=(0)f  and satisfying  
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for all Xyx ∈,  and 0>t  and taking 
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4.3  Theorem 

Let X  be a real linear space, ),,( MTY ζ  a complete RN-Space and 
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       ))(()( 3

,0)()()( tkt xxCxf µζ −Φ≥
−

 (66) 

 for all Xx∈  and 0>t .  

Proof: Putting 0=y  in (47), we have  

   )()( ,0)(3
))(

3

)(
(

t
k

t
x

xf
k

kxf Φ≥
−

ζ  (67) 

 for all Xx∈  and 0>t . Consider the set  

     0}=(0);:{= gYXgS →  (68) 

 and the generalised metric d  in S  is defined by  

     0}>,)()(:][0,{=),( ,0)()()( tXxtctcinfhgd xxhxg ∈∀Φ≥∞∈
−

ζ  (69) 

 where inf  +∞∅ = . Then, as in the proof of[19,Lemma 2.1],we can show that ),( dS  is a generalised complete 

metric space.Now, let us define an operator SS →∆ :  such that  

     )(
1

=))((
3

kxh
k

xh∆  (70) 
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 for all Xx∈ .We assert that ∆  is strictly contractive on S  . 

Given Shg ∈, , let ][0,∞∈c  be an arbitrary constant with chgd <),( , that is  

       )()( ,0)()()( tct xxhxg Φ≥
−

ζ  (71) 

 for all Xx∈  and 0>t , and so  

 )(=)(
3

)(
3

1
)(

3

13))(())((
k

ct

k

ct

kxh
k

kxg
k

xhxg

µ
ζ

µ
ζ

−
∆−∆

 

                    )(= )()( ctkxhkxg µζ
−

 

                     )(,0)( tkx µΦ≥  

                     )(,0)( txΦ≥  (72) 

 for all Xx∈  and 0>t .Thus chgd <),(  implies that
333

<))(
1

),(
1

(=)),(
k

c
kxh

k
kxg

k
dhgd

µ
∆∆ . i.e.  

          ),()),(
3

hgd
k

hgd
µ

≤∆∆  (73) 

 for any Shg ∈, ,where 
3

/kµ  is lipschitz constant with 1</<0
3

kµ . Thus ∆  is strictly contractive. 

It follows from (67) that  

          .
1

)
)(

,(=),(
33 kk

kxf
fdffd ≤∆  (74) 

 By Theorem (2.6),there exists a mapping YXC →:  satisfying the following   

     (i).  C is a fixed point of ∆ , that is ,  

             )(=)(
3

xCkkxC  (75) 

 for all Xx∈ . The mapping C is a unique fixed point of ∆  in the set  

              }.<).(:{= ∞∈Ω hgdSh  (76) 

 Thus, C is a unique mapping satisfying (75) such that there exist )(0,∞∈c  satisfying  

              )()( ,0)()()( tct xxCxf Φ≥
−

ζ  (77) 

 for all Xx∈  and 0>t .  

     (ii) 0),( →∆ cfd
n

 as ∞→n  ,which implies that, for all Xx∈ .  

              ).(=
)(

3
xC

k

xkf
lim

n

n

n ∞→
 (78) 

  

     (iii).  )/)/(1,(),(
3

kffdCfd µ−∆≤  with Ω∈f  ,and by using (74) we can say that )1/(),(
3

µ−≤ kCfd  

and so  

          )()( ,0)(3)()( t
k

t
xxCxf Φ≥

−
−

µ
ζ  (79) 

 for all Xx∈  and 0>t ,which proves the inequality (66). Rest of the proof can be easily generated from Theorem 

(4.1).  

4.4  Corollary 

Let X  be a real linear space, 0≥ϑ  and p ∈  (0,1) .Let YXf →:  be a mapping with 0=(0)f  and satisfying 

(63).Then, for all Xx∈ , 
n

n

n
k

xkf
limxC

3

)(
=)(

∞→
 exists and YXC →:  is a unique cubic mapping such that  



 

Approximation of the Cubic Functional Equation in Random Normed Spaces : Direct and Fixed Point Method 

-113- 

              
ppp

p

xCxf
xtkk

tkk
t

||||)(

)(
)(

3

33

)()(
ϑ

ζ
+−

−
≥

−
 (80) 

 for all Xx∈  and 0>t .  

Proof:The proof follows from above theorem by assuming  

 
)||||||(||

=)(),( ppyx
yxt

t
t

++

Φ

ϑ
 

for all Xyx ∈,  and 0>t  and taking 
p

k
3

=µ .  

4.5  Remark 

In corollaries 4.2  and 4.4  if we assume  

 
)||||.||(||

=)(),( ppyx
yxt

t
t

ϑ+

Φ  

then we get Ulam-Gavruta-Rassias ][7,9,10,25  product stability.Since we put y=0 in the functional 

equation,therefore this stability is obvious.  

 

5. CONCLUSION 

 In this paper,we proved the generalised Hyers-Ulam-Rassias stability for cubic functional equation (1) in 

random normed spaces using two different approaches-direct and fixed point method.By using fixed point method 

we made an interesting connection between fixed point theory,random normed spaces and cubic functional 

equations. 
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ABSTRACT : 

An analytical method has been developed for determining the true value of the central tendency of each of 

annual maximum and annual minimum of ambient air temperature at a location. Also, the value of central 

tendency of each of annual maximum and annual minimum of ambient air temperature at Dhubri has been 

determined by applying the method developed here from the data since the year 1969 onwards. Determination of 

these two values is based on the assumption that change in temperature over years during the period for which 

data are available occurs due to change cause only but not due to any assignable cause. The values of these two 

have been found to be 37.1 and 37.2 Degree Celsius and 8.8 Degree Celsius respectively. Moreover, it has been 

found that the central tendency of annual minimum of the ambient air temperature at Dhubri cannot be less 

than 8.7409 Degree Celsius and greater than 8.75 Degree Celsius.  

Keywords : Annual maximum, annual minimum, ambient air temperature, Dhubri, analytical method of 

determination. 

 

1.  INTRODUCTION 

There are many situations where observations are composed of some parameter and chance error
7
. Change in 

temperature at a location over temperature periodic year (abbreviated as TPY in this article) corresponds to such a 

situation. 

Temperature at a location attains at a maximum and a minimum and during a TPY
2
, 3, 4 & 5. The annual extremum 

(i.e. extremum occurred during a TPY) of temperature at a location is to remain the same provided there is no 

cause(s) influencing upon the change in temperature at the location other than the chance error which is universal 
3,4 

& 5
. For this reason, variation occurs among the observations on annual maximum as well as on annual minimum. 

Though variation exists, each of annual maximum and of annual minimum temperature has a central tendency. 

Thus if 

X1, X2,………………, Xn 

are observations on the annual maximum (or annual minimum) of the ambient air temperature at the location with  

µ   as its central tendency and if the variation among the observations occurs due to chance cause only, 

    Xi  =  µ + εi    ,    (i = 1 , 2 , ……….. , n)                                                  (1.1) 

where ε1 , ε2 , ……….. , εn are values of the chance error associated to X1 , X2 , ………… , Xn respectively. 
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The existing statistical methods of estimations namely least squares method, maximum likelihood method, 

minimum variance unbiased method, method of moment and method of minimum chi-square etc. provide 

�� =  ��� � x

�

�
�
 

as estimator of the central tendency µ (Kendall & Stuart 
6
 ; Walker, Helen , & Lev 

7
). 

This estimator, however, suffers from an error e = e(ε1 , ε2 , ……….. , εn) given by  

                        e = e(ε1 , ε2 , ……….. , εn)  =  εi �  = ��� ∑ ε
��
�                                                                       (1.3) 

Which may not be zero 
4&5 

In other words, none of these methods can provide the true value of the parameter µ . A method has been developed 

by 
3 & 8

 for determining almost certain interval for the parameter µ . The method is based on the area property of 

normal probability distribution 
9,10,11,12,13,14

. In another study 
4 & 5

, has developed an analytical method for 

determining the true value of the parameter µ in the situation where the observations are composed of the parameter 

itself and chance errors. This method is based on the idea of finding the sufficient shortest interval value for the 

parameter µ , using order statistics. In this method, it is required to exclude two extreme observations in cumulative 

manner for computing interval value at very stage in order to obtain the sufficient shortest interval. This method 

however fails in the situation where insufficient observations are remained after exclusion of the extreme 

observations at some stage before obtaining the sufficient shortest interval. A method for the same has been 

developed in order to overcome this inconvenience. This paper is based on the development of this method and on 

one numerical application of the method in determining the value of the central tendency of each of the annual 

maximum and the annual minimum of the ambient air temperature at Dhubri. The determination of these two 

values is based on the assumption that the variation among the observations used in determination occurs due to 

chance cause only. 

The method developed is based on the theory of normal probability distribution discovered by a German 

mathematician
15 

in the year 1809, the credit for which discovery is also given by some authors to a French 

mathematician
16 & 17

 who published a paper in 1738 that showed the normal distribution as an approximation to the 

binomial distribution discovered by
20

 in 1713
18 & 19

. The normal distribution 
9,10,11,12,13 & 14

 is described by the 

probability density function 

  
���: �, �� = {��2���

�}�� ���[− 1 2# {�� − �� �}$⁄ ]
−∞ < � < ∞, −∞ < � < ∞, 0 < � < ∞.   

,                                            (1.4) 

Where  (i) X is the associated normal variable, 

               (ii) µ & σ are the two parameters of the distribution 

        and (iii) Mean of  X = µ &  Standard Deviation of  X = σ. 

For a normal distribution mean, median and mode are equal. Moreover, the midrange of the distribution coincides 

with each of them. 

 

2. DEVELOPMENT OF THE METHOD 

Let 

X1 , X2 , ………… , Xn 
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be distinct observations on the annual extremum (maximum or minimum) of the ambient air temperature at a 

location in the years  

1 , 2 , 3 , ……….. , n 

respectively.  

(If the available observations are not distinct, one can extract the distinct observations from them.) 

If µ is the central tendency of the annual extremum of the ambient air temperature at the location and if the 

variation among the observations occurs due to chance cause only,, 

Xi  =  µ + εi    ,    (i = 1 , 2 , ……….. , n)                                                       (2.1) 

where ε1 , ε2 , ……….. , εn are values of the chance error variable ε associated to X1 , X2 , ………… , Xn 

respectively. 

It is to be noted that 

 (1)  X1 , X2 , ………… , Xn  are known, 

 (2)  µ , ε1 , ε2 , ………… , εn are unknown 

& (3) the number of linear equations in (2.1) is n with n + 1 unknowns implying that the equations are not solvable 

mathematically. 

 

Reasonable facts /Assumptions regarding εi: 

(1)  ε1 , ε2 , ……….. , εn are unknown values of the variables ε. 

(2)  The values ε1 , ε2 , ………… , εn are very small relative to the respective values  

       X1 , X2 , ………… , Xn.  

(3)  The variable ε assumes both positive and negative values. 

(4)  P( ‒ a ‒ da <  ε  <  ‒ a)  =  P( a <  ε  <  a + da) for every real a. 

(5)  P( a <  ε  <  a + da)  >  P( b <  ε  <  b + db)  

      & P( ‒ a ‒ da <  ε  <  ‒ a)  <  P( ‒ b ‒ db <  ε  <  ‒ b)  

      for every real positive a <  b. 

(6)  The facts (3), (4) & (5) together imply that ε obeys the normal probability law. 

(7)  Sum of all possible values of each ε is 0 (zero) which together with the fact (6) implies that E(ε) = 0. 

(8)  Standard deviation of ε is unknown and small, say σε. 

(9)  The facts (6), (7) & (8) together imply that ε obeys the normal probability law with  

mean (expectation) 0 & standard deviation σε. Thus  

                                                        ε  ~  N(0 , σε)                                         (2.2) 

Note (2.1): Since  

ε1 , ε2 , ……….. , εn 

are independently and identically distributed N(0 , σε) variates, 

their mean defined by   

+,� =  ��� � ε

�

�
�
 

is a N(0 , σε /√n) variate. 
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3. THE METHOD 

Let the observations be arranged in ascending order of magnitude as  

                  X(1) <  X (2)  < , ………… < X (n)                                                  (2.3) 

From the model (2.1) satisfied by the observations, 

                                                          X(i)  =  µ + ε(i)    ,    (i = 1 , 2 , ……….. , n)     (2.4) 

where ε(1) < ε(2)  < ……….. , ε(n) 

Which implies that X(1) contains the maximum negative error and X(n) contains the maximum positive error among 

the errors associated to the observations. 

Let us construct the n averages defined by  

                              _                                    n  

      X( i ) (1)   =  (n ‒ 1) ‒ 1
    ∑    X( j )                                   (2.5) 

                                                                         j =1, j ≠ i   

                       (i = 1 , 2 , ……….. , n) 

 

Here   X(1) (1)  >  X(2)(1) > …………. > X(n-1)(1) > X(n)(1)                (2.6) 

 

From the model (2.1), 

                                                             _                      _ 

                               X(i) (1)  =  µ + ε(i) (1)                               (2.7) 

Where  

                               _                                  n  

ε(i) (1)   =  (n ‒ 1) ‒ 1
    ∑    ε(i)                                                 (2.8) 

                                                                       j =1, j ≠ i   

                     (i = 1 , 2 , ……….. , n) 

 

By Note (2.1), some of the averages 

                   _             _                       _               _ 

   ε(1) (1)  ,  ε(2) (1)  , …………. > ε (n-1)(1) ,  ε (n)(1)                     

will lie above 0 and the others below 0. 

Consequently, some of the averages 

                         _                _                           _               _ 

    X(1) (1)  ,   X(2)(1) ,  …………. > X(n-1)(1) ,  X(n)(1)                     

Will lie above µ and the others below µ. 

      _                _                          _ 

           X(1) (1)  ,   X(2)(1) ,  …………. ,  X(k)(1) 

 

Fall above µ and     

                                _                  _                                _         

                            X(k+1) (1)  ,   X(k+2)(1) ,  …………. ,  X(n)(1) 
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Fall below µ. 

Then µ will lie within   

                                              _                    _                       

                             X(k+1) (1)  &   X(k)(1)  with 

                                                              _                             _ 

                             X(k+1) (1)  <  µ   <  X(k) (1)                     (2.9) 

Of course, it is trivial that 

                                                           _                          _ 

                              X(n) (1)  <  µ   <  X(n) (1)                                (2.10) 

The interval (2.9) can help to determine the true value of µ. 

Note that positive error associated to X(i)(1) decreases as i moves from 1 towards some point p and that negative 

error associated to X(i)(1) decreases as i moves from n towards the point p. 

Thus, X(p)(1) is the true value of µ. However, it is still unknown. 

It can be thought that it can be possible to detect / determine the true value of µ  from an interval value of µ which is 

of sufficiently small length. 

It is to be noted that if one among the large number (n) of observations is excluded and the same method is applied 

on the remaining observations, one can obtain valid interval for the true value of µ  of the type given by (2.9). 

Thus, one can obtain a number of such valid intervals for the true value of µ  of the type given by (2.9) based on all 

the observations excluding each one of the available observations. 

From the set of these intervals one can obtain the shortest possible interval for the true value of µ. This shortest 

interval can provide the true value of µ. 

 

4. AMBIENT AIR TEMPERATURE AT DHUBRI 

Observations on annual maximum and annual minimum of the ambient air temperature at Dhubri, which have been 

collected from the metrological department of India, are available from the year 1969 to the year 2013. These have 

been presented in Table -1 and Table - 4 respectively. 

Computation of the Central Tendency of Annual Maximum : 

Table – 2 has been constructed for distinct observed values on annual maximum obtained from Table- 1 

In Table - 2 has been constructed for distinct observed values on annual maximum arranged in ascending order of 

magnitude. 

In order to determine the value of the central tendency of annual maximum, interval values have been computed by 

the formula (2.9) from the distinct observations excluding each one of them one after another starting from 

approximately the middle position and then alternately one from above and from below along with the 

corresponding shortest interval. These values have been presented in Table - 3. 

The shortest interval, obtained, for the central tendency of annual maximum is 

(37.0364 , 37.3318) 

Now, the real number which is strictly greater than 37.0364 and strictly less than 37.3318 are 37.1 and 37.2 

(corrected up to one place of decimal). 

Computation of the Central Tendency of Annual Minimum : 
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Table - 5 has been constructed for distinct observed values on annual minimum obtained from Table - 4 

Interval values are to be computed from order statistics. 

Therefore, Table - 6 has been constructed for distinct observed values on annual minimum arranged in ascending 

order of magnitude. 

In order to determine the value of the central tendency of annual minimum, interval values have been computed by 

the formula (2.9) from the distinct observations excluding each one of them one after another starting from 

approximately the middle position and then alternately one from above and from below along with the 

corresponding shortest interval. These values have been presented in Table - 6. 

The shortest interval, obtained, for the central tendency of annual minimum is  

(8.7409 , 8.7636) 

Now, the real number which is strictly greater than 8.7409 and strictly less than 8.75 is 8.8 (corrected up to one 

place of decimal). 

Hence, the true value of the central tendency of annual minimum of the ambient air temperature at Dhubri is 8.8 

Degree Celsius. 

 

TABLES OF DATA, COMPUTATIONS AND RESULTS 
Tables of Annual Maximum of ambient air temperature at Dhubri : 

TABLE – 1 

Observed Value on Highest Maximum Temperature (in Degree Celsius)  

occurred during Temperature Periodic Year 

Year no 
Observed 

value 

Calendar year, Month 

& Date of occurrence 
Year no 

Observed 

value 

Calendar  year ,Month 

& Date of occurrence 

1 36.5 1969, May 21 14 35.8 2003, June 3 

2 36.1 1970, April 1 15 35.5 2004, May 8 

3 36.2 1971, March 27 16 35.3 2005, September 19 

4 35.2 1972, March 27 & July 13 17 36.4 2006, August 11 

5 39.6 1973, April 17 18 36.8 2007, August 10 

6 35.7 1974, March 18 19 35.2 2008, March 12 & August 9 

7 37.8 1975, April 3 20 36.3 2009, April 27 

8 38.4 1976, April 13 21 35.5 2010, March 21 

9 35.7 1977, April 24 22 35.0 2011, August 31 

10 38.7 1979, June 6 23 36.2 2012, April 3 

11 37.5 1980, April 16 24 36.0 2013, June 11 

12 35.8 1981, June 13    

13 36.1 2001, March 7    

 

TABLE – 2 

Distinct Observed values on highest Maximum temperature (in Degree Celsius)  

occured during temperature periodic year in ascending order. 

Serial No Observed value Serial No Observed value Serial No Observed value Serial No Observed value 

1 35.0 6 35.7 11 36.3 16 37.8 

2 35.1 7 35.8 12 36.4 17 38.4 

3 35.2 8 36.0 13 36.5 18 38.7 

4 35.3 9 36.1 14 36.8 19 39.6 

5 35.5 10 36.2 15 37.5 
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TABLE – 3 

Interval values on highest Maximum temperature (in Degree Celsius) occured during temperature periodic year. 

Serial No 
Excluded 

Observation 
Interval Yielded Shortest Interval Yielded 

1 

 
Nil (36.35 , 36.6056) (36.35 , 36.6056) 

2 

 
36.2 (36.3588 , 36.6294) (36.3588 , 36.6056) 

3 36.3 (36.3529 , 36.6353) (36.3588 , 36.6056) 

4 36.1 (36.3647 , 36.6353) (36.3647 , 36.6056) 

5 36.4 (36.3471 , 36.6176) (36.3647 , 36.6056) 

6 36.0 (36.3706 , 36.6412) (36.3706 , 36.6056) 

7 36.5 (36.3412 , 36.6118) (36.3706 , 36.6056) 

8 35.8 (36.3824 , 36.6529) (36.3824 , 36.6056) 

9 36.8 (36.3235 , 36.5941) (36.3824 , 36.5941) 

10 35.7 (36.3882 , 36.6588) (36.3882 , 36.5941) 

11 37.5 (36.2824 , 36.5529) (36.3882 , 36.5529) 

12 35.5 (36.4000 , 36.6706) (36.4000 , 36.5529) 

13 37.8 (36.2647 , 36.5353) (36.4000 , 36.5353) 

14 35.3 (36.4118 , 36.6824) (36.4118 , 36.5353) 

15 38.4 (36.2214 , 36.5) (36.4118 , 36.5) 

16 35.2 (36.4176 , 36.6882) (36.4176 , 36.5) 

17 38.7 (36.2118 , 36.4824) (36.4176 , 36.4824) 

18 35.1 (36.4235 , 36.6941) (36.4235 , 36.4824) 

 

From this table the shortest interval is (36.4235 , 36.4824) Therefore Maximum temperature at Dhubri is 36.4 

Tables for Annual Minimum of Ambient Air Temperature at Dhubri. 

TABLE – 4 
Observed Value on Lowest Minimum Temperature (in Degree Celsius)  

occurred during Temperature Periodic Year. 

Year no Observed value 
Calendar year, Month 

& Date of occurrence 
Year no 

Observed 

value 

Calendar year ,Month 

& Date of occurrence 

1 8.1 1969, January 16 13 6.1 2003, January 24 

2 7.3 1971, January 31 14 10.0 2004, January 10 

3 8.8 1972, February 08 15 9.5 2004, December 27 

4 9.2 1973, January 10 16 10.5 2006, January 23 

5 9.3 1974, February 08 17 8.9 2007, January 15 

6 9.6 1975, January 10 18 9.1 2008, February 02 

7 8.6 1976, January 22 19 12.2 2009, January 06 

8 7.6 1977, January 30 20 10.0 2009, December 30 & 2010, January 03 

9 8.9 1979, January 05 21 9.0 2011, January 14 

10 8.4 1980, January 18 22 7.8 2012, January 16 

11 9.4 1981, January 10 23 5.8 2013, January 09 

12 8.8 2001, January 06 
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TABLE – 5 
Distinct  Observations  on Lowest Minimum temperature (in Degree Celsius)  

occured during temperature periodic year in ascending order. 

Serial 

No 
Observed value 

Serial 

No 

Observed 

value 
Serial No 

Observed 

value 
Serial No Observed value 

1 5.8 6 8.1 11 9.0 16 
9.5 

2 6.1 7 8.4 12 9.1 17 9.6 

3 7.3 8 8.6 13 9.2 18 10.0 

4 7.6 9 8.8 14 9.3 19 10.5 

5 7.8 10 8.9 15 
9.4 

20 
12.2 

 

TABLE – 6 
Interval values on Lowest Minimum Temperature (in Degree Celsius) 

occured during Temperature periodic year. 

Serial No Excluded Observation Interval Yielded Shoetest Interval Yielded 

1 Nil (8.5789 , 8.9158) (8.5789 , 8.9158) 

2 9.0 (8.5556 , 8.9111) (8.5789 , 8.9111) 

3 9.1 (8.55 , 8.9056) (8.5789 , 8.9056) 

4 8.9 (8.5611 , 8.9167) (8.5789 , 8.9056) 

5 9.2 (8.5444 , 8.9) (8.5789 , 8.9) 

6 8.8 (8.5667 , 8.922) (8.5789 , 8.9) 

7 9.3 (8.5389 , 8.8944) (8.5789 , 8.89444) 

8 8.6 (8.5778 , 8.933) (8.5789 , 8.8944) 

9 9.4 (8.5333 , 8.8889) (8.5789 , 8.8889) 

10 8.4 (8.5889 , 8.944) (8.5889 , 8.8889) 

11 9.5 (8.5278 , 8.8833) (8.5889 , 8.8833) 

12 8.1 (8.6056 , 8.9611) (8.6056 , 8.8833) 

13 9.6 (8.5222 , 8.8778) (8.6056 , 8.8778) 

14 7.8 (8.6222 , 8.9778) (8.6222 , 8.8778) 

15 10.0 (8.5 , 8.8556) (8.6222 , 8.8556) 

16 7.6 (8.6333 , 8.9889) (8.6333 , 8.8556) 

17 10.5 (8.4722 , 8.8278) (8.6333 , 8.8278) 

18 7.3 (8.65 , 9.0056) (8.65 , 8.8278) 

19 6.1 (8.7167 , 9.0722) (8.7167 , 8.8278) 

 

From this table the shortest interval is (8.7167 , 8.8278) Therefore Maximum temperature at Dhubri is 8.7 ( in one 

decimal places)  
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5.  CONCLUSION 

 Each of the existing statistical methods of estimation provides an estimate of the central tendency of annual 

extremum of the ambient air temperature which suffers from an error though may be small. Moreover, the amount 

of error involved in this estimate is unknown. The method developed here provides an estimate which is free from 

error. 

The determination of central tendency of the extremum of ambient air temperature at Dhubri is based on the 

assumption that change in temperature at this location over years during the period for which data are available 

occurs due to chance cause only but not due to any assignable cause.  

Thus if the assumption is true, the values of the central tendency of annual maximum and annual minimum of the 

ambient air temperature at Dhubri namely 36.4 Degree Celsius and 8.7 Degree Celsius respectively, as obtained in 

this study, are acceptable. Moreover, one can conclude that  

i) The central tendency of Annual Maximum of the Ambient Air temperature at Dhubri can not be less than 

36.4235 and greater than 36.4824 degree celcious and 

ii) The central tendency of annual minimum of the Ambient Air temperature at Dhubri can not be less than 8.7167 

and greater than 8.8278 degree celcious. 

However, it is yet to examine whether the assumption upon which the current study is based is true.  

For a normal distribution mean, median and mode are equal. Each of them is a measure of central tendency. It 

seems that there exists some method of determination of central tendency in the same situation. Thus, it is a 

problem for the researchers at this stage to search for whether there exists method for the same based on mean, 

median and mode as well as to discover the hidden method if exists. 
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ABSTRACT : 

In this paper we are interested in C-matrix completion problem, when a partial C-matrix has C-matrix 

completion. An nxn complex matrix is called a C-matrix if all its principal minors are negative. Here a 

combinatorially symmetric partial C-matrix has C-matrix completion if the graph of its specified entries is a 1-

chordal graph, and then there exists C-matrix completion for a partial C-matrix whose associated graph is an 

undirected cycle. 

Keywords : matrix; Partial matrix; Completion problem; Undirected graph. 

MSc code: 15A48 

 

1. INTRODUCTION:  

 A partial matrix is an array in which some entries are specified, while the remaining entries are free to be 

chosen. We make the assumption throughout that all diagonal entries are prescribed. A completion of a partial 

matrix is the conventional matrix resulting from a particular choice of values for the unspecified entries. The 

completion obtained by replacing all the unspecified entries by zero is called the zero completion and denoted by

0A . A matrix completion problem asks which partial matrices have completions with a given property. 

A natural way to describe an  n n×  partial matrix A  is via a graph ( , )AG V E= , where the set of vertices V  is 

{1, 2,..., } { , },n and i j i j=/ , is an edge or arc if and only if the ( , )i j  entry is specified as all diagonal entries are 

specified, we omit loops. A directed graph is specified with a non-combinatorially symmetric partial matrix and, 

when the partial matrix is combinatorially symmetric, an undirected graph can be used. In this paper we are going 

to work with combinatorially symmetric partial matrices and therefore we deal only with undirected graphs. 

In general, a combinatorially or non combinatorially symmetric partial C -matrix does not have a C -matrix 

completion. An  n n×  partial matrix is said to be combinatorially symmetric if the ( , )th
i j entry is specified if and 

only if the ( , )th
j i  entry is; and is said to be sign-symmetric if, for all , {1, 2,..., }i j n∈  such that both ( , ), ( , )i j j i  

entries are specified. 

 A path is a sequence of edges 1 2 2 3 1{ , },{ , },...,{ , }k ki i i i i i
−

in which all vertices are distinct. A cycle is a closed 

path, that is, a path in which the first and the last vertices coincide. A chord of the cycle 

1 2 2 3 1 1{ , },{ , },...,{ , },{i , }k k ki i i i i i i
−

 is an edge { , }s ti i  not in the cycle (with 1 ,s t k≤ ≤ ). 

 

2. VARIOUS TYPES OF MATRICES 

2.1. C -COMPLEX MATRIX 

 An n n×  complex matrix is called C -matrix if all principal minors are negative. 
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2

11 12 1

2

21 22 2

2

1 2

n

n

n n nn n n

i b a a

a i b a
C

a a i b
×

 
 
 

=
 
 
  

L

L

M M M M

L

 

eg. the C -matrix of 3 3× . 

                                                             

2

11 12 13

2

3 3 21 22 23

2

31 32 33 3 3

i b a a

C a i b a

a a i b

×

×

 
 

=  
 
   

2.2. PERMUTATION MATRICES: 

 A permutation matrix P is obtained by interchanging rows on the identity matrix. The Permutation matrix P is 

then PDP
T
. 

NOTATIONS: Let ( )ijA a=  be an n n×  C -matrix. then 

(i) If P  is a permutation matrix, then 
TPDP  is a C -matrix. 

(ii) If D  is a positive diagonal matrix, then ,DA AD  are C -matrices. 

(iii) If D  is a non-singular diagonal matrix, then 
1DAD−
 is a C -matrix. 

(iv) 0ija =/ and sign (aij) = sign (aji) for all i, j∈ {1,..., }n . 

(v) If 1 0
ii

a
+

> , 1,2,... 1,i n= − then A gn∈ , where 
ij{ ( ) | a 0ijA a= ≠  and sign 

1

ij(a ) ( 1) ,i j+ +

= −
 
for all 

i, j {1,..., n}}∈ . 

(vi) Any principal sub matrix of A is aC -matrix.         

2.3. PARTIAL C-MATRIX: 

    A partial matrix is said to be a partial C -matrix if every completely specified principal sub matrix is a C -

matrix. 

Our interest here in the C -matrix completion problem, that is, when a partial C -matrix has an C -matrix 

completion. Keeping this in mind, It would not make sense to study the existence of C -matrix completion of 

partial C -matrix with some null entry or of non-sign symmetric partial C-matrices, as the following example 

illustrate. 

Example 2.1  

Consider the partial C -matrix 
2 4

2 4

2

0

2

? 2

i i

A i i

i

 
 

=  
 
 

2 4 4

2

1
1 2 0

2 2 1

i i i

i

−
⇒ = = − <

−

, A has no C -matrix completion, as any completion

 
2 4

2 4

2

0

2

2

i i

A i i

a i

 
 

=  
 
 

4

8

2 4

0
1 0

i
i

i i
⇒ = = >  of A  is not C -matrix by Notations. 
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 Example 2.2 

Consider the partial C -matrix 

  

2

2

2

? ? 2

? ?

3 ?

i

A i

i

 
 

=  
 
 

 

A  is not sign-symmetric. A  admits no C -matrix completion, since any  completion   

  

2

2

2

2

3

a b i

A c i d

e i

 
 

=  
 
 

 of A  is notC -matrix by Notations. 

 

Proposition 2.1 

Let  A be a 2 2×  sign-symmetric partial C -matrix whose specified entries are all non-zero. A has an C -matrix 

completion. 

Proof     

If A  is completely unspecified or completely specified, the result is trivial. We denote by EU  the number of 

unspecified entries of A . Consider the following cases: 

a) 1EU =  

Using adequate permutation similarities, we can assume that A has either the form 
11

21 22

?
,

a
A

a a

− 
=  

− 
 with 

11 22,a a >0, or the form  
12

21 22

?
,

a
A

a a

 
=  

− 
With 22 0.a >  In the first case, it suffices to consider a completion 

11

21 22

c

a c
A

a a

− 
=  

− 
  of A such that 21 11 22.a c a a>  In the second case, consider a completion 

12

21 22

,c

c a
A

a a

− 
=  

− 
 

Of A  with 12 21 22.0 c a /a a< <
 

b) U 1.E >  

In this case, we can complete some entries of matrix A in a way to obtain a partial C -matrix with exactly one 

unspecified entry and, then, use (a).  

Unfortunately a sign-symmetric n n× partial C -matrix  A, with no null specified entries does not admit, in general, 

C -matrix completions, for n 3≥ when A is non-combinatorially symmetric and for n 4≥  when A  is 

combinatorially symmetric. 

 

Example 2.3 

Let (a )ijA = be the following non- combinatorially symmetric partial C -matrix 

2

2 4

2

? 3

2 .

? 2

i

A i i

i

 
 

=  
 
 

 

Observe that A  is partial sign-symmetric  and has no specified zero entries. However, sign 
1 3 1

13(a ) 1 ( 1) .+ +

= ≠ −

Thus, A has no C -matrix completion by proposition 1.1. 
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By embedding the above matrix as a principal submatrix and putting 
,1 s−  on the main diagonal and unspecified 

entries on the remaining position, that is 

 ,
A X

M
Y I

 
=  
 

Where I  is a partial matrix with all entries unspecified except for the entries of the main 

diagonal that are equal to-1,and X and Y are completely unspecified submatrices, we produce a partial C -matrix of 

size , 4,n n n× ≥ which has no C -matrix completion. 

Example 2.4 

Consider the following combinatorially symmetric partial matrix (a )ijA =  

2 4

2 4

2 4

2

? 3

2 ?
A .

? 2

4 ? 2

i i

i i

i i

i

 −

 
 

=
 
 
−  

 

A  is sign-symmetric and has no specified null entries. Observe that sign 
1 4 1

14(a ) 1 ( 1) .+ +

= − ≠ − Then, A has no C -

matrix completion by notations. 

We can extend this result for partial C -matrices of size , 5,n n n× ≥ to exclude partial C -matrices like  the ones 

considered in the preceding  examples, 

We can define the set pgn  to consist of the n n×  partial matrices (a )ijA = such that a 0ij ≠  and sign 

1
(a ) ( 1) ,

i j

ij

+ +

= −  for all i, j {1,..., n}∈ such that the (i, j) entry specified. 

 When restricting  our study to partial C -matrices that belong to pgn , we are implicitly analyzing the 

completion problem for partial C -matrices that are permutation or diagonally similar to a partial C -matrix that 

belongs to pg .n Take, for instance, a partial C -matrix  A  with all specified entries negative; it is not difficult to 

verify that A  is diagonally similar to a partial C -matrix B pg .n∈ Therefore, A has an C -matrix  completion if 

and only if B does. Belonging  to pgn  is a necessary  condition in order to obtain an C -matrix completion of a 

partial C -matrix. We observe that every combinatorially symmetric partial C -matrix of size 3 3× belongs to 3pg .  

Proposition 2.2 

Let A be a 3 3× partial C -matrix. There exists an C -matrix completion cA of A if and only if 3pg .A∈  

Proof. 

In light of the preceding remarks we just need to show sufficiency. So let A be in 3pg .Moreover, as the class of C

-matrices is invariant under left and right positive diagonal multiplication, we may take all diagonal entries is A  to 

be 1.− We denote by UE the number of unspecified entries of A . If U 0,E = A  is not a partial matrix and if 

U 6,E =  the result is trivial. 

Let us first consider the case in which A  has exactly one unspecified entry. By permutation and diagonal 

similarities, we can assume that this entry is in position (1,3)   and that all upper diagonal entries are equal to 1. 

Hence, A  has the following form 

 

2 4

2 4

21

2

31 32

?i i

A a i i

a a i

 
 

=  
 − 

 with 
21, 32 1a a > and 31 0.a >  

Our aim is to prove existence of 0c > such that the completion 
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2 4

2 4

21

2

31 32

c

i i c

A a i i

a a i

 −

 
=  
 − 

 

Of A  is  an C -matrix. If 31 1,a > it suffices to choose 1.c = If 31 1,a = then 
c

A  is an C -matrix for all 1.c >  In 

case 31 1,a < consider the completion 
c

A  with 
2

311/ .c a=  

The formulation  of the problem in case U 1
E

>
 
reduces to that of U 1.

E
= In fact, it is possible to complete some 

adequate unspecified entries in order to obtain a partial C -matrix in 3pg  with a single unspecified entry. 

 

Example 2.5 

Let A  be the partial matrix

2 4 2

2 4 2

2 2 4

4 2 2

11 ?

2 200

0.1 10

10 1.01

i i i

i i i
A

i i i

i i i

 
 
 

=
 
 
  

. 

It is not difficult to verify that A is a partial C -matrix and 4A pg∈ . Given C ∈ℜ , the completion  

 

2 4 2

2 4 2

2 2 4

4 2 2

11

2 200

0.1 10

10 1.01

i i i c

i i i
A

i i i

i i i

 
 
 

=
 
 
  

 of A  is not an C -matrix. simple calculations show that 

det [{1,2, 4}] 1801 19c
c

A = −  and det [{1,3,4}] 9.89 0.899c
c

A = − + . So, these principal minors are both 

negative if and only if c 1801/19>  and c 9.89 / 0.899< , which is impossible.  

 

3. CHORDAL GRAPHS 

 In order to get started, we recall some very rich clique structure of chordal graphs. A clique in a graph is 

simply a complete  induced subgraph. We also use clique to refer to a complete graph and we denote by 
pk  a clique 

on p vertices. A useful view of chordal graph is that they have a tree-like structure in which their maximal clique 

play the role of vertices. Consider two graph 1G  and 2G , each of which containing the clique  
pk . If we identify 

the copy of 
pk  in 1G  with that in 2G , then the resulting G  is called a clique sum of 1G  and 2G . 

 If 1G  is the clique 
pk  and 2G  is any chordal graph containing the clique 

pk , p q< , then the clique sum of 

1G and 2G  along 
pk  is also chordal. The cliques that are used to build chordal graphs are the maximal cliques of 

the resulting chordal graph and the cliques along which the summing takes place are the so-called minimal vertex 

separators of the resulting chordal graph. If the maximum number of vertices in a minimal vertex separator is p , 

then the chordal graph is said to be p -chordal.  

Theorem 3.1   

Let G  be an undirected connected 1-chordal graph. Then any partial C -matrix, the graph of whose specified 

entries is G , has an C -matrix completion. 

Proof.  

 Let A be a partial C -matrix, the graph of whose specified entries is G . The proof is by induction on the number 

p  of maximal cliques in G . For 2p =  we obtain the desired completion, if A is an n n×  partial C -matrices, 
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then the graph of whose specified entries is 1-chordal with two maximal cliques. Then, A  admits an C -matrix 

completion. suppose that the result is true for a 1-chordal graph with 1p −  maximal cliques and we are going to 

prove it for p maximal cliques. 

 Let 1G  be the subgraph induced by two maximal cliques with a common vertex. The submatrix 1A  of A , the 

graph of whose specified entries is 1G , and by replacing the obtained completion 1c
A  in A , we obtain a partial C -

matrix such that whose associated graph is 1-chordal with 1p −  maximal cliques. The induction hypothesis allows 

us obtain the result. 

The completion problem for partial ,C matrices− the graph of whose specified entries is ,P chordal− P 1,>  is 

still unresolved. We note here that any P chordal− graph ,  P 1,>  contains , as an induced subgraph ,  a 

2 chordal− graph with four vertices. We can assume , without loss of generality , that a 4 4× partial ,C matrix−

the graph of whose prescribed entries is a 2 chordal− graph ,  has the form  

 

2 4 2

13

2 4 2

21 24

2 2 4

21 32

2 2

42 43

,

i i i a x

a i i i a
A

i a a i i

y i a a i

 
 
 

=
 
 
  

with 21 32 43a , , 1a a >  and 13 31 24 42, 1.a a a a > It is easy  to prove that 

32 0 0 0det ( 1) xy x det [{234} /{123}] y det [{123}/{234}] detA a A A A= − − − + .--------(1) 

From (1) we are going to obtain sufficient conditions for the existence of the desired completion. 

 If 0det [{123} /{234}] 0A > ,then A admits an C -matrix completion. Consider the completion  

2 4 2

13

2 4 2

21 24

2 2 4

21 32

2 2

42 43

c

i i i a c

a i i i a
A

i a a i i

d i a a i

 
 
 

=
 
 
  

, 

Where c R∈  such that 13 24 0 320 min{ , ,det [{234}/{123}] / ( 1)}c a a A a< < − . Now the determinant of any 

principal submatrix containing position (4,1) is a polynomial in d  with negative leading coefficient. Therefore, 

there exists M ∈ℜ  such that cA  is an C -matrix for d M> .if 0det [{234} /{123}] 0A > , choosing 

 0
42 21 43 31

32

det [{234} /{123}]
0 min{ , , }

( 1)

A
d a a a a

a
< <

−

, 

We can prove, in an analogous way to previous case, that there exists H ∈ℜ  such that cA  is an C -matrix for 

c H> . 

 Therefore, if 0det [{123} /{234}] 0A >  or 0det [{234} /{123}] 0A > , A  admits an C -matrix completion. 

 A partial matrix A is said to be block diagonal if A  can be partitioned as  

1

2

? ... ?

? ... ?

: : ::: :

? ? ... k

A

A
A

A

 
 
 =
 
 
 

, 

Where ? indicates a rectangular set of unspecified positions and each iA  is a partial matrix, 1,2,..., ki =   

Theorem 3.2.  If a partial C -matrix A is permutation similar to a block diagonal partial matrix in which each 

diagonal block has an C -matrix completion, then A  admits an C -matrix completion. 
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Proof.  Consider a block diagonal partial matrix 

1

2

? ... ?

? ... ?

: : ::: :

? ? ... k

A

A
A

A

 
 
 =
 
 
 

 

Such that iA  is an i in n× partial C -matrix that admits an C -matrix completion 
iA , for every  {1, 2,..., }i k∈ . 

Consider the partial C -matrix 

1

2

? ... ?

? ... ?

: : ::: :

? ? ... k

A

A
A

A

 
 
 

=
 
 
  

. 

We can assume, without loss of generality, that each block  
iA , belongs to 

ing  and that all diagonal elements of A  

are equal to 1− . 

The proof is by induction on the number of diagonal blocks k . 

Firstly, consider the case 2k = . A  can be partitioned as follows 

 

1

2

2

2

? ?

? ?

? ?

? ?

T

T

A v

u i
A

i w

z A

 
 
 

=
 
 
  

%

%

,        Where  
1

1 2T

A v
A

u i

 
=  
 

%
 and 

2

2

2

Ti w
A

z A

 
=  
 

%
. 

Consider the partial C -matrix A%  obtained from A  by specifying the 1 1( , n 1)n + , 1 1( 1, n )n +  entries with 1, 2,

respectively. The principal submatrix 
1[{1,..., 1}]A n +%  of A%  is a partial C -matrix, the graph of whose specified 

entries is  1 -chordal and connected. we know there exists an C -matrix completion of that submatrix. Let  

1

2 4

22

T

T

A v x

u i i

y i

 
 
 
 
 

%

 be such a completion.The associated graph of the partial matrix 

 

1

2

2

2

?

1 ?

2

? ?

T

T T

A v x

u i

y i w

z A

 
 
 
 
 
  

%

%

 is 1-chordal and connected. This guarantees the existence of an C -matrix completion of 

that matrix and, consequently, of A . 

 We are now in position to prove the result for k 2> . Consider the partial C -matrix 

 

1

2

? ... ?

? ... ?

: : ::: :

? ? ... k

A

A
A

A

 
 
 

=
 
 
  

and use the first part of the proof to obtain, from the diagonal blocks 
1A and

2A ,                 

C -matrix completion 1B , belonging to 1 2n ng
+

, of the submatrix  
1

2

?

?

A

A

 
 
 

. 
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The partial matrix 

1

3

? ... ?

? ... ?

: : ::: :

? ? ... k

B

A

A

 
 
 
 
 
 

 is a block diagonal partial C -matrix with 1k −  blocks. By the induction 

hypothesis, such a partial matrix admits an C -matrix completion. Obviously, that C -matrix is also a completion of 

A . 

 Since the class of C -matrices is closed under permutation similarity, any partial C -matrix that is permutation 

similar to a block diagonal partial C -matrix in which each diagonal block has an C -matrix completion can be 

completed to an C -matrix. 

 From this result and taking into account that a partial matrix whose graph is non-connected is permutation 

similar to a block diagonal matrix, we can assume, without loss of generality, that the associated graph of a partial 

C -matrix is a connected graph. 

 

CONCLUSION: 

 We conclude that, the partial C-matrix problem is nothing but n n×  C-matrix  is a square matrix. The 

Submatrix of a matrix A of size n n×  lying in row α and column β , , {1, 2,..., }nα β ⊆ is denoted by                   

[ , ]A α β . Therefore, a real matrix A of size n n×  is an C-matrix if det [ ] 0A α < for all {1,2,..., }nα ⊆ . 
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ABSTRACT : 

Protecting the environment has became a priority for most countries in recent years. Recycling material and 

remanufacturing used products are inevitable options to reduce waste generation and the exploitation of natural 

resources. Remanufacturing is often considered as a environmental preferable choice of end of life option in 

comparison to material recycling or manufacturing of new products. The forward supply chain essentially 

involves the movement of products from upstream suppliers to the downstream customers while the reverse 

supply chain involves the movement of used products from customers to upstream suppliers. This paper proposes 

the study of remanufacturing in the closed loop supply chain consisting of a vendor(manufacturer) and a 

buyer(retailer).The used products collected by the buyer from the customers are remanufactured by the vendor. 

The inventory holding cost of collected used products are involved in the model. The optimal lot size of 

remanufactured products and the collection rate of used products to be remanufactured are obtained which 

minimize the joint total cost of the supply chain. Finally a numerical example is provided for the described 

model. 

Keywords : Remanufacturing, EOQ, Vendor-Buyer, Used products, Environment, Reverse logistics. 

Keywords : Annual maximum, annual minimum, ambient air temperature, Dhubri, analytical method of 

determination. 

 

1. INTRODUCTION                                                                                                                                          

 Product recovery (repair, refurbishing, remanufacturing) is receiving increasing attention. In the past, 

engagement in recovery activities was often driven by legislation or by associated environmentally friendly image. 

But nowadays the main reason for companies to become involved with product recovery is economical. Being 

active in product recovery reduces the need for virgin materials and thus leads to reduced costs. Recoverable 

manufacturing systems minimize the environmental impact of industry by reusing materials and reducing energy 

use. In such systems that are environmentally conscious, products are returned from end users and travel back in the 

reverse supply chain. 

To manufacturers, once a product has been returned to a company, it has several options from which to choose. The 

first option is to sell the product as a used product if it can be established that it meets sufficient quality levels. The 

second option is to clean and repair the product to working order. Product repair involves fixing and replacement of 

failed parts. The third option is to sell the product as a refurbished unit. The product does not lose it’s identity and 

is brought back to a specified quality level. The fourth option is to remanufacture. In this option the product will 

undergo the reverse channel at the fabrication stage where it would be disassembled, remanufactured and 

reassembled to flow back through the retail outlet back to the consumers as a remanufactured product. The fifth 
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option is to retrieve one or more valuable parts from the product. The sixth option is to recycle. The main purpose 

of recycling is reuse materials from used components and products. The seventh option is to recover the energy put 

in the product through incineration. The last option is disposal. The general goal for any value channel is to keep all 

materials within the channel and thus minimize any flow into the external environment. The basis of recoverable 

manufacturing system is remanufacturing. Remanufacturing offers several advantages as a form of waste reduction 

since it is profitable and environmentally conscious. 

Supply chain management has received tremendous attention both from the business world and from academic 

researchers. Closed loop supply chain consists of  both forward supply chain and a reverse supply chain. A forward 

supply chain is a combination of processes to fulfill customer’s requests and includes all possible entities like 

suppliers, manufacturers, transporters, ware houses, retailers and customers. The management of the reverse flows 

is an extension of the traditional supply chains with used products or material either returning to reprocessing 

organizations or being discarded. Reverse supply chain management is defined as the effective and efficient 

management of the series of activities required to retrieve a product from a customer and either dispose of it or 

recover value. 

The remainder of the paper is organized as follows: Section 2 describes the relevant literature. Section 3 presents 

the notations and assumptions. The formulation of the model is provided in Section 4. Section 5 illustrates a 

numerical example. The paper concludes in Section 6. A list of references is also provided. 

 

2.  LITERATURE REVIEW 

 The importance of the repairable/recoverable inventory problem was recognized back in the 1960’s. Schrady 

(1967) determined the optimal procurement and repair quantities for the reparable inventory system of an EOQ 

model. Mabini et al. (1992) studied the stock out as service level for the reparable system and besides extended to 

the case of multiple products with limited repair capacity. Fleischmann et al. (2000) explored the design of logistics 

networks and established general characteristics of product recovery systems. Koh et al. (2002) enquired a joint 

EOQ and EPQ model to optimally determine EOQ for procurement and inventory level of recoverable products 

concurrently. Teunter (2004) acquired simple square root formula to determine the optimal production and recovery 

batch quantities for two classes of policies: (1,R) and (P,1). Inderfurth et al. (2005) included the deteriorating nature 

of reworkable products into an EPQ-based recoverable system and found the optimal production lot size. A lot of 

researches addressed the issues of repair and disposal of used products simultaneously. The optimal setup numbers 

for production and repairs in a collection time interval at a fixed waste disposal rate were derived by Richter 

(1996a) and assumed waste disposal rate as a decision variable. Richter (1996b) further observed the behaviours of 

EOQ-related cost factors and/or additional non-EOQ-related cost factors of the reparable system. The EOQ repair 

and waste disposal problem with integer setup numbers was studied by Richter and Dobos (1999) and showed that 

the pure strategy for either total repair or total waste disposal is dominant. Teunter (2001) evaluated the recoverable 

item inventory problem with disposal consideration by involving different holding costs for manufactured and 

recovered products. Jaber et al. (2014) coped with economic order quantity models where the imperfect items are 

either sent to an independent repair shop or replaced by good ones from a local supplier. There is growing number 

of researches addressing remanufacturing issues in  a closed-loop supply chain. Guide and Van Wassenhove (2001) 

showed that the acquisition of used products for remanufacturing is profitable. Heese et al. (2005) developed a 

quantitative model to investigate the consequences of used products take-back on firms, industry and customers and 

suggested that a manufacturer can increase both profit margins and sales. 
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 Savaskan et al. (2004) studied four different channel structures in closed-loop supply chains with product 

remanufacturing and compared these models with respect to return rates, retail prices and channel members’ profits. 

A deterministic mixed integer linear programming model with the network design problem for a closed loop supply 

chain under uncertainty was developed by Pishvaee et al. (2011).Hong and Yeh (2012) concluded that the retailer 

collection model is better off when the third-party collector is a non-profit organization. Inventory management of 

produced/remanufactured/repaired and returned items has been receiving increasing attention in recent years. 

Richter and Weber (2001) extended the Wagner/Whitin model to consider additional variable manufacturing and 

remanufacturing costs and explored the impact of the disposal excess inventory on the solution. Jayaraman (2006) 

provided an analytical model for closed-loop supply chains with product recovery and reuse to aid operational 

decision makers for production planning and control. Chung et al. (2008) developed a closed loop supply chain 

model with remanufacturing and maximized the joint profits of the supplier, the manufacturer, the third party 

collector and the retailer. Saadany and Jaber (2008) studied about the coordination of two-level supply chain where 

the production interruptions are permitted to restore process quality whenever the production process shifts to the 

out-of-control state. Saadany and Jaber (2010) created and analyzed productions, remanufacture and waste disposal 

EPQ models. An extended joint economic lot size problem in which the return flow of repairable 

(remanufacturable) used products was incorporated by  Dobos et al. (2011) where the returned products are 

remanufactured by the vendor. 

 This paper is an extension of “ Optimal replenishment quantity of new products and return rate of used 

products for a retailer ” by Chih-Chung Lo, Cheng-Kang Chen and Tzu-Chun Weng. In this paper the vendor is 

engaged in remanufacturing of used products collected by the buyer from the customers. The inventory holding cost 

for the used products is also included in the model. 

 

3.  NOTATIONS AND ASSUMPTIONS 

Notations �      demand of the buyer per time unit, �� manufacturing productivity of the vendor, �� > �, �� remanufacturing productivity of the vendor, �� > �, �� setup cost of an ordering of the buyer, ℎ� holding costs of the new products of the buyer, 
� holding costs of the used products of the buyer, ℎ� > 
�, �� disposal costs of the used products of the buyer, �� setup cost of an ordering of the vendor, ℎ� holding costs of the new products of the vendor, 
� holding costs of the used products of the vendor, ℎ� > 
� , �� unit purchasing cost of the product of vendor, � lot size of remanufactured products of the system, (decision variable) � return rate of used items to be collected and remanufactured, (decision variable) (0 < � < 1) �  The unit cost of collecting, holding and handling a returned product which covers the collecting fee paid by 

the retailer to consumers. � The unit price of a collected used products sold by the retailer to the manufacturer, the salvage value of 

collected used products � − � is supposed to be positive. 
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�(�) The investment cost of the retailer in collecting used product activities,which is assumed to be a function of 

return rate �. ℎ��(�) holding cost coefficient for manufacturing, ℎ��(�) holding cost coefficient for remanufacturing, 

 

Assumptions 

The assumptions of this model are 

1. Single product case. 

2. Instantaneous replenishment of the product. 

3. Shortage is not permitted. 

4. Demand rate is constant and deterministic. 

5. Infinite planning horizon. 

6. �(�) = ���� denotes the investment cost function in collecting used   products. 

7. The cumulative return rate of used products at the current replenishment cycle is expressed by a geometric 

series as ∑ ��� !∞�"! = � 1 − �⁄  , where �  is the initial value and common ratio r, 0 ≤ � ≤ 1.It is noted that the 

total number of collected used products should be non negative and cannot exceed the number of products sold 

at each replenishment cycle. Hence the constraint 0 ≤ &! ' ≤ 1 holds. 

8. The vendor collects the used products from the buyer to remanufacture.     

  

4.  MODEL FORMULATION 

 Consider a supply chain consisting of a vendor and a buyer. The buyer is assumed not only to sell the products 

to public consumers but also to collect those sold used products from them. The collected used products are send to 

the vendor for remanufacturing process. The used products send by the buyer in batches was remanufactured by the 

vendor. 

The joint total cost of the system per cycle is, 

()���(�, �) = (�� + ��) + ��
2� ,ℎ� + �
� + ℎ��(�) + ℎ��(�)- + ��� + ���� − (� − �)��1 − � + ��(1 − �)� 

 where 

 ℎ��(�) = ��. .ℎ� . / 012 − 0134 − 
� 0135 − 2�. .ℎ� . / 012 − 0134 − 
�5 + ℎ� 012, 

 ℎ��(�) = ��. .(ℎ� − 
�). / 013 − 0124 + 
� 0125 + 2�
� . /1 − 0124 + ℎ� 012. 
 The corresponding joint total cost per unit time (()��6)) can be obtained by dividing the joint total cost per 

cycle (()���) by the cycle length  
70. The objective of the model is to minimize the total cost per unit time,subject 

to the return rate constraint 0 ≤ &! ' ≤ 1. Namely, 

Minimize  

()��6)(�, �) = (�� + ��) �� + �2 ,ℎ� + �
� + ℎ��(�) + ℎ��(�)- + ��� + �����
�  

                                     −(� − �)� &! ' + ��(1 − �)�                                                            (1)                      

Subject to: 0 ≤ &! ' ≤ 1                                                                                                      (2) 

         In order to solve the proposed non linear programming problem shown in (1), the constraint 0 ≤ &! ' ≤ 1 is 

ignored and the  partial derivatives of ()��6)(�, �) with respect to �  and �  are obtained to find the optimal 

values. 
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        To find the optimal value of � for fixed value of �,the first partial derivative of  ()��6)(�, �) is set to zero 

and the optimal value of � is given by, 

                   �∗(�) =
9 �0(:;<:=<>?&@)

AB;<&C;<B23(&)<B32(&)D                    

                                                                                                                                   (3) 

       Substituting (3) in (1), the ()��6)(�, �) is expressed as, 

()��6)(�) = 92�(�� + �� + ����)Aℎ� + �
� + ℎ��(�) + ℎ��(�)D + ��� 

                                       −(� − �)� &! ' +
��(1�)�                                                                                                                                              (4) 

      Differentiating partially ()��6)(�) with respect to � and equating to zero, gives the optimal solution of  �. 

E()��6)E� = √2�
GH
I J(�� + �� + ����)

29Aℎ� + �
� + ℎ��(�) + ℎ��(�)D /
� + ℎ��′ (�) + ℎ��′ (�)4

+ 9Aℎ� + �
� + ℎ��(�) + ℎ��(�)D
J(�� + �� + ����) (���)

KL
M − (� − �)�1 − � − ��� = 0 

                                                                                                                                             (5)   

5.  NUMERICAL EXAMPLE 

 In this section we establish a numerical example for the above proposed model. The following parameters are 

used for finding the solution: 

       � = 1,000 piece/year, �� = 2,500  piece/year, �� = 1,200  piece/year, �� = 100 $/ordering, ℎ� = 5 

$/piece/year, 
� = 1  $/piece/year, �� = 1,000  $/ordering, ℎ� = 3 $/piece/year, 
� = 1  $/piece/year, �� = 1 

$/piece, �� = 10,  � = 2, � = 1, �� = 50000 and � = 0.1. 

From (5) we found P∗ = Q. QQRSRSTU 

From (3) we found V∗ = WSS. TUR  and 

From (1) we get XYZ[\Y∗ = RW, Q]S. ^^R 

 

6.  CONCLUSION 

 This paper studies the remanufacturing of used products in the supply chain comprising of a vendor and a 

buyer. Remanufacturing is an eco-friendly option as it uses less energy than manufacturing a new product, reduces 

CO2 emissions, reduces flow of material to landfill and reduces raw material consumption. The incorporation of 

remanufacturing in the supply chain reduces the total cost of the system. 
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ABSTRACT : 

In this paper, we first review the work of Vedas and Purana's literature and its classifications. We present the 

mathematical principles and Sulba –sutras for knowledge of mathematics. We also develop Vedic Mathematical 

–Sutras and Sub- sutras for multiplication of two numbers with base 10, 100 and 1000 etc.  

Keyword: Vedic literature, Rigveda, Yajurveda, Samveda, Atharvaveda, Upnisad. 

 

1. INTRODUCTION 

 Vedic Mathematics as propounded by Swami Bharti Krishna Tirth. He came across Ganit Sutras which 

reconstructed and formed 16 Sutras, 13 Up-Sutras (1911-1918 AD), but which got lost the all Sutras. At the last 

time of his life, he re-wrote an Introductory Volume on the subject but couldn't write further volume on account of 

his failing health. It is popularly known as Vedic Mathematics which deals with faster computation techniques. 

Vedic Mathematics is not only a sophisticated pedagogic and research tool but also an introduction to an ancient 

civilization. The Vedic Mathematical System is based upon 16 main and many more sub-sutras, which are formulas 

that can be applied to various mathematical problems. Vedic Mathematics is only one aspect of the entirety of 

Vedic Culture, which was at one time the original, worldwide culture of the human race for countless millenniums. 

Vedic literature as such signifies a vast body of sacred and esoteric knowledge concerning eternal spiritual truths 

revealed to sages (Rishis) during intense meditation. The Vedas are considered full of all kinds of knowledge and 

an infallible guide for man in his quest for the four goals –Dharma, Artha  (material welfare), Kama (pleasure and 

happiness) and Moksha (Salvation) [see reference 1, 2, 3, and 4]. 

 

2. VEDIC LITERATURE AND CLASSIFICATION 

 There are four kinds of Vedas – Rigveda, Yajurveda, Samaveda and Atharvaveda. 

• Rig Veda – Knowledge of Hymns, 10859 verses. “There is only one truth, only men describe it in different 

ways.”  

• Yajur Veda – Knowledge of Liturgy, 3988. 

• Sama Veda – Knowledge of Classical Music, 1549 verses 

• Atharva veda – Knowledge of Earth 

 Rigveda was divided into 21 branches and the Yajurveda into 100 branches, the Samaveda into 1,000 branches 

and the Atharvaveda into 9 branches (Kurma Purana 52.19-20). Every branch has four subdivisions called Samhita 

(or Mantra), Brahmana (contains mantras and prayers), Aranyaka and Upanisad (both with philosophical contents). 

So all in all, the Vedas consist of 1130 Samhitas, 1130 Brahmanas, 1130 Aranyakas, and 1130 Upanisads, a total of 

4520 titles. By the influence of time, however, many texts have been lost, stolen and destroyed. Some scriptures 

were so intimate that they have buried and hidden so as not be misused by any one in kali- yuga. 
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Upavedas: There are four Upaveda - Ayur (medicine), Gandharva (music), Dhanur (martial science), Sthapatya 

(architecture). Upaveda ("applied knowledge") is used in traditional literature to designate the subjects of certain 

technical works. 

Vedangas ("limbs of Veda"): There are six Vedangas - Siksa (pronunciation), Canda (poetic meter), Nirukta 

(etymology and lexicology), Vyakarana (grammar), Kalpa (ritual), Jyotisa (astronomy and astrology). First two 

teach how to speak the Veda, second two teach how to understand the meaning of the Veda and the last two teach 

how to use the Vedas. 

Puranas: These explain the teachings of the four Vedas in story form, making spiritual life simpler. There are 

eighteen Puranas divided into three groups along with three predominating Deities: sattva (goodness) - Visnu, rajas 

(passion) - Brahma and tamas (ignorance)[Ref.Siva. Padma Purana, Uttara khanda].   

There are eighteen Maha Puranas : 1. Brahma, 2. Padma, 3. Vaisnava, 4. Saiva (or Vayu), 5. Bhagavata, 

6.Bhavisya, 7.Naradiya, 8.Skanda, 9.Linga, 10.Varaha, 11.Markandeya, 12.Agneya, 13.Brahmavaivarta, 

14.Kaurma, 15.Matsya, 16.Garuda, 17.Vayaviya and 18.Brahmanda. Garuda Purana 31,43,45,64 also adds: 

"Bhagavata is the best of all Puranas." They are divided in this way to gradually raise the conditioned soul from 

ignorance to pure goodness. 

 

The Rigveda Samhita 

 Rigveda mostly consists of hymns to be sung to the various gods as manifestations of the one Divinity. Varuna, 

Mitra, Surya, Savitr, Vishnu, Pusan, the Ashvin twins, Agni, Soma, Yama, Parjanya, Indra, Maruts, Rudra, 

Vishvakarman, Prajapati, Matarishvan, Ushas, Aditi are some of the Gods encountered in the Rg Veda. Varuna - 

the god of the sky, Indra - the god of war and Agni - the god of fire, are more popular than Vishnu and Rudra 

(Shiva). Surya, Savitr and Pusan all refer to the solar deity and the Gayatri mantra is addressed to Savitr. Ushas and 

Aditi are goddesses. 

This is the oldest Vedic text, as also the largest. It comprises of 10552 mantras in 1028 hymns (=Suktas).The 

hymns are altogether attributed to 407 Rishis,or Sages, of which 21 are women Sages (= Rishika). 

 

The Yajurveda Samhitas: 

There are two Yajurveda : (1) Shukla Yajurveda (2) Krishna Yajurveda. The extant Shukla Yajurveda Samhitas are 

Madhyandina and Kanva. The extant Krishna Yajurveda Samhitas are Kathaka, Maitrayaniya, Taittiriya (also 

called ‘Apastambi’ Samhita), Kapishthala (fragmentary) and possibly Charaka. Of the extant Yajurveda Samhitas, 

the two major ones currently are the Madhyandina and the Taittiriya. 

The Yajurveda is a liturgical text, but also contains sacrificial formulas to serve the purpose of ceremonial religion 

(yaju is derived from the root “yag” to sacrifice). Madhyandina Samhita consists of 40 chapters and is given below: 

• Chapters 1-2 deal with Darsapurnamasa rites, 

• Chapter 3 with sacrifices performed in the morning and the evenings, sacrifices performed every four months at 

the start of the three seasons 

• Chapters 4-8 with Soma sacrifices 

• Chapters 9-10 with Rajasuya and Vajapeya 

• Chapters 11-18 with construction of altars for yajnas 

• Chapters 19-31 with Sautramani rite 

• Chapters 22-25 with the Ashvamedha 

• Chapters 26-29 give material supplementary to earlier chapters 

• Chapters 30-39 contain mantras for novel and unique rites like the Purushamedha, Sarvamedha, Pitrmedha and 

Pravargya 

• Chapter 40 is the Isavasya Upanishad 
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The Samaveda Samhitas and Melodies:  

It is purely a liturgical collection that comprises of 1875 Rks. All these verses are set to melodies, called the 

Samans. The origins of Indian classical music lie in the Sama Veda. The Samhita is divided into two broad 

divisions- Purvarchika,  on which the Gramageva   and the Aranyaka  samans are set, and the Uttararchika , on 

which the Uha and the Uhya chants are set. 

 

The Atharvaveda Samhita:  

It is often said that the Atharva Angirasa was originally not given the status of a Veda, but seems to have been later 

elevated to the position. The main theme of the Atharva Veda is cure for diseases, rites for prolonging life and 

fulfillment of one’s desires, statecraft, penances, magic, charms, spells and sorcery. While the Gods of the Rg Veda 

are approached with love, the Gods of the Atharva Veda are approached with cringing fear and favor is curried to 

ward off  their wrath. 

Sophisticated literary style and high metaphysical ideas mark this Veda. The two extant Samhitas of Atharvaveda 

are Shaunakiya and Paippalada.  The former has 5977 mantras while the latter has approximately 7950 mantras.  

The Atharvaveda has numerous names – 

• Bhargvangirasa Veda – because of association with Bhrigus and Angirases 

• Atharvangirasa Veda – Because of association with Atharvana and Angirasa priests, and because of a dual 

nature (sorcery as well as ‘shanti-pushti’ rites) 

• Kshatraveda – because it has several hymns dealing with war, rites of coronation and so on. 

• Brahmaveda – because it has several hymns dealing with spirituality 

 

3. VEDIC SHAKHAS AND THEIR GEOGRAPHICAL DISTRIBUTION 

 The Vedic literature that has come down to our times is attached to various traditional schools of recitation and 

ritual called the ‘shakhas’. All the four Vedas have more than one shakha extant.from various sources, it can be 

determined that the following geographical distribution of Vedic Shakhas at various intervals of times, and their 

present state of survival: 

Shakala Rigveda: Thrives in Maharashtra, Karnataka, Kerala, Orissa, and Tamil Nadu and to some extent in Uttar 

Pradesh. Might have existed in Punjab. Nambudiris of Kerala recite even the Brahmana and Aranyaka with accents. 

Accented manuscripts of Brahmana and Aranyaka are available to this day. 

Shankhayana Rigveda: Gujarat and parts of Rajasthan and Maharashtra. Oral tradition extinct, only manuscripts of 

Samhita are extant. Ritual lives in a very fragmentary condition. 

Bashkala Rigveda: Claims have been made about its existence in Kerala, Rajasthan, Bengal and Assam as a living 

tradition, but have never been verified. The Samhita exists in manuscript. Nambudiris of Kerala are said to follow 

this Shakha of RV as far as the Samhita is concerned but studies of their oral tradition do not seem to bear this out. 

1) Ashvalayana Rigveda: Manuscripts of the Samhita have been found in Kashmir, Maharashtra (Ahmadnagar) 

and Patna (Bihar). In parts of central and eastern India, Shakala RV texts are often attributed to Ashvalayana. For 

instance, the Aitareya Brahman is often called Ashvalayana Brahmana in West Bengal. Oral traditions extinct 

although the followers of Shakala Shakha in Maharashtra often term themselves as Ashvalayanas because they 

follow the Kalpasutra (Shrautasutra + Grhyasutra) of Ashvalayana. 

2) Paingi Rigveda: It exits  in Tamil Nadu and around Andavan & Nikowar.  Oral traditions lost but Brahmana 

texts rumored to exist. 

Mandukeya Rigveda: Magadha and eastern and central Uttar Pradesh. Possibly lower Himalayas in Uttarakhand 

and Himachal Pradesh. No text or oral tradition extant although the Brhaddevata and Rigvidhana might belong to it. 

Shaunakiya Atharvaveda: Gujarat, Karnataka, Rajasthan, Coastal Andhra Pradesh, Avadh region in Uttar Pradesh, 

Himachal Pradesh. Only Gujarat has maintained the oral traditions, and the shakha has been resuscitated in recent 

times in Tamil Nadu, Karnataka and in Andhra Pradesh. 
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Staudayana Atharvaveda: According to Majjhima Nikaya, followers of this shakha lived in Koshala (central and 

eastern Uttar Pradesh). The shakha is completely lost. 

Paippalada Atharvaveda: Followers are currently found in parts of Orissa and adjacent areas of Bihar and West 

Bengal and recite the Samhita in ekasruti (monotone syllable). Epigraphic and literary evidence shows that they 

once thrived in Karnataka, Kerala, Maharashtra, and parts of Gujarat, East Bengal and in Tamil Nadu as well.  

Devadarshi Atharvaveda: According to literary evidence, followers of this Shakha once lived in coastal Andhra 

Pradesh. Other AV shakhas said to have been prevalent in that region were Shaulkayani and Munjakeshi. The 

shakha is completely lost. 

Charanavaidya and Jajala Atharvaveda: Perhaps existed in Gujarat,Central India and adjacent parts of Rajasthan. 

According to the Vayu and Brahmanda Puranas, the Samhita of the Charanavaidya shakha had 6026 mantras. 

3) Mauda Atharvaveda: According to some scholars, they existed in Kashmir 

4) Madhyandina Yajurveda: Currently found all over North India- Uttar Pradesh, Haryana, Punjab, Bihar, Madhya 

Pradesh, Rajasthan, Gujarat and even Maharashtra (up to Nashik), West Bengal, Assam, Nepal. Along with 

Taittiriya Yajurveda, it is the most prevalent Vedic shakha. Followers of this school were found in Sindh (Pakistan) 

in the 19th century but became extinct after Hindus were ethnically cleansed by the Muslim majority after 1947. 

5) Kanva Yajurveda: Currently found in Maharashtra, Tamil Nadu, and Andhra Pradesh. In Orissa, the followers 

of this shakha follow a slightly different text. Epigraphic evidence shows that they were once present all over India, 

as far as Himachal Pradesh and possibly in Nepal. 

6) Charaka Yajurveda: Interior Maharashtra, adjacent parts of Madhya Pradesh, Assam, Gujarat, Uttar Pradesh. 

Followers of this shakha now follow the Maitrayani YV shakha, having lost their own texts. 

7) Maitrayani Yajurveda: In Morvi (Gujarat), parts of Maharashtra (Naskik/Bhadgaon, Nandurbar, Dhule). 

Earlier, they were spread all the way east up to Allahabad and extended into Rajasthan and possibly into Sindh. 

8) Kathaka Yajurveda: The oral traditions became extinct possibly a few decades ago. They were found in central 

and eastern Punjab, Himachal Pradesh, possibly west Punjab and NWFP. In later times, they got restricted to 

Kashmir, where all their extant manuscripts have been unearthed. Recently, the entire Hindu minority was cleansed 

from the Kashmir valley by Islamists, and so the shakha might be deemed extinct completely now. 

Charayaniya Katha Yajurveda: It existed in Kashmir. 

Kapisthala Katha Yajurveda: Found in West Punjab around the time of the invasion of Alexander. Also in parts of 

Gujarat. Only a fragmentary Samhita and Grhyasutra text exist, and followers of this shakha are said to exist at the 

mouths of Narmada and Tapi rivers in Gujarat. 

9)  Jabala Yajurveda: Central India, around the Narmada region. In Maharashtra, there still exist Shukla-

Yajurvedin Brahmins who call themselves ‘Jabala Brahmins’, but there is no knowledge of the existence of any 

texts of this shakha. 

10) Taittiriya Yajurveda: Buddhist texts and some versions of Ramayana attest their presence in the Gangetic plains 

but currently they are found all over Southern India. The Taittiriyas are themselves divided into numerous sub-

schools. Among these, the followers of Baudhayana and Apastamba were found all over South India (including 

Maharashtra), while the Hiranyakeshins were found mainly in Konkan and Western Maharashtra. The Vaikhanasas 

have a more eastern presence- around Tirupati and Chennai. The Vadhulas are present currently in Kerala and 

earlier in adjacent parts of Tamil Nadu. The Agniveshyas, a subdivision of the Vadhula immigrants from Malabar, 

are found around Thanjavur in Tamil Nadu. The Apastamba, Hiranyakeshin, Vaikhanasa and Baudhayana schools 

have survived with all their texts intact. The Vadhulas survive, with most of their texts while the Bharadvajas and 

Agniveshyas are practically extinct as a living tradition although their fragmentary/dilapidated texts survive. 

11) Kauthuma Samaveda Gujarat, Maharashtra, Tamil Nadu (tradition revived with the help of Brahmins from 

Poona), Kerala, Karnataka, Uttar Pradesh, Bihar (tradition revived a century ago), West Bengal (tradition has been 

revived recently). There are numerous varieties of Kauthuma chanting. This shakha is the most vibrant tradition of 

Samaveda. 
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12) Ranayaniya Samaveda: Orissa (manuscripts available, status of oral tradition not known), Maharashtra, 

Karnataka (the Havyak <havik> community for instance), Uttar Pradesh (till recently in Bahraich and Mathura), 

Rajasthan (till recently in Jaipur). The existence of this shakha was endangered till recently, but it has been 

strengthened with the help of institutions like the Kanchi Kamakoti Matha. 

13) Jaiminiya/Talavakara Samaveda: Two distinct sub streams- the Namudiri recitations in Central Kerala, and the 

recitations of Tamil Nadu Brahmins in districts adjacent to Kerala and in and around Srirangam. The survival of 

these schools is endangered. 

14)  Shatyayaniya Samaveda: It has been prevalent in Tamil Nadu and parts of North India. The shakha is no longer 

extant. 

15) Gautama Samaveda: It also exists in Tamil Nadu and in Andhra Pradesh till the 17th cent.C.E. Many followers 

of the Kauthuma school in Andhra Pradesh still call themselves ‘Gautamas’. 

16) Bhallavi Samaveda: It has been prevalent in Karnataka and parts of North India 

17) Other Shakhas of Yajurveda: A text called ‘Yajurvedavriksha’ gives the geographical distribution of more than 

100 Shakhas of Yajurveda. This description is being left out for brevity. 

 

4. SULBA SUTRA – KNOWLEDGE OF MATHEMATICS 

 The following Sulba Sutras (Geometrical texts written around 800 BC - 200 BC) exist in print or manuscript 

• Apastamba 

• Baudhayana 

• Manava 

• Katyayana 

• Maitrayaniya (somewhat similar to Manava text) 

• Varaha (in manuscript) 

• Vadhula (in manuscript) 

• Hiranyakeshin (similar to Apastamba Shulba Sutras) 

 

Ancient Indian Mathematical Texts 

Ancient Indian Mathematical texts during the last two millenniums written by, Aryabhatta, Bhaskaracharya, 

Varahamihira, Brahmagupta, etc. 

Written by Bhaskaracharya II in 1150 AD - Siddhānta Shiromani, is divided into four parts called  

• Lilāvati (arithmetic) 

• Bijaganita (algebra) 

• Grahaganita (mathematics of the planets) and  

• Golādhyāya (spheres) 

• Surya Siddhant 

Vedic Mathematical Sutras: Consider the following three sutras: 

1. “All from 9 and the last from 10,” and its corollary. “Whatever the extent of its deficiency, lessen it still further 

to that very extent; and also set up the square of that deficiency.” 

2. “By one more than the previous one,” and its corollary: “Proportionately.” 

3. “Vertically and crosswise,” and its corollary. “The first by the first and the last by the last.” 

The first rather cryptic formula is best understood by way of a simple example: 

Let us multiplying 5 by 9. For this we have to: 

1. First, assign as the base for our calculations the power of 10 nearest to the numbers which are to be multiplied. 

Our base is 10. 
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2. Write the two numbers to be multiplied on a paper one above the other, and to the right of each write the 

remainder when each number is subtracted from the base 10. The remainders are then connected to the original 

numbers with minus signs, signifying that they are less than the base 10. 

 5-5 

 9-1 

3. The answer to the multiplication is given in two parts. The first digit on the left is in multiples of 10 (i.e. the 5 

of the answer 45). Although the answer can be arrived at by four different ways, only one is presented here. 

Subtract the sum of the two deficiencies (5 +1 = 6) from the base (10) and obtain 10 - 6 = 4 for the left digit 

(which in multiples of the base 10 is 40). 

 5 – 5 

 9 – 1 

 4 

4. Now multiply the two remainder number 5 and 1 to obtain the product 5. This is the right hand portion of the 

answer which when added to the left hand portion 4 (multiples of 10) produces 45. 

 5 – 5 

 9 – 1 

 ------- 

 4/5 

 Another method employs cross subtraction. In this example the 1 is subtracted from 5 to obtain the first digit of 

the answer and the digits 1 and 5 are multiplied together to give the second digit of the answer. This process has 

been noted by historians as responsible for the general acceptance of the x mark as the sign of multiplication. The 

algebraically explanation for the first process is 

(x - a) (x - b) = x (x – a - b) + ab 

 Where x is the base 10, a is the remainder 5 and b is the remainder 1 so that 

  5 = (x - a) = (10 - 5) 

  9 = (x - b) = (10 - 1) 

The equivalent process of multiplying 6 by 8 is then 

  x (x – a – b) + ab  or 

  10(10 – 5 – 1) + 15 = 40 + 5 = 45 

Illustration:  Consider the following cases where 100 has been chosen as the base. Let us multiplying 95 by 78, 91 

by 92 and 25 by 98 . 

       95 – 5                                 91 – 9                                                           25 – 75 

                  78 – 22                               92 – 8                                                           98 – 2  

              --------------                      -----------                                                     ------------ 

  100-27/110 = 73/110 = 74/10                      83/72                                                      23/150 = 24/50 

                      (i)                                           (ii)                                                            (ii            

   In example (i), subtract sum of two deficiencies (5+22= 27) from the base 100 and obtain 73 which is in left hand 

portion. Now multiplying remainder numbers 5 and 22 i.e. 110 added in (73x100) 7300 obtain 7410. Similarly 

process use in other two examples (ii) & (iii) 

     In the last example we carry the 100 of the 150 to the left and 23 (signifying 23 hundred) becomes 24 hundred. 

Here in the sutra’s words “all from 9 and the last from 10” are shown. The rule is that all the digits of the given 

original numbers are subtracted from 9, except for the last (the right hand-most one) which should be deducted 

from 10. 

Consider the case when the multiplicand and the multiplier are just above a power of 10. In this case we must cross-

add instead of cross subtract. The algebraic formula for the process is:  

( x + a) (x + b) = x (x + a + b) + ab 
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Illustration 1. We consider multiplication of two numbers 107 above  from 100 & 96 below from 100 . 

 Where 100 has been chosen as base. We have from formulae, 

Here x = 100, a=7 , b = - 4 . Then  

 ( 100 + 7) (100 -  4) = 100(100 + 7 - 4) + 7 (-4) = 100 x103 – 28 = 10300 – 28 = 10272. 

Another ways, we have a combination of subtraction and addition We consider the numbers 107 and 96 for 

multiplication.  

                     107 + 7                   and                                    11 + 1 

                      96 -  4                                                               8  –   2 

                 -----------------                                                       -------- 

            103/-28 = 102/(100 - 28) = 102 /72 = 10272                   9/-2 = 8/(10 – 2) = 8/8 =88 

Illustration 2. We consider multiplication of two numbers nearest from 1000. i.e. 992 and 998. Where 1000 as the  

base . 

The multiplication is given in two parts. Fist subtract the sum of the two deficiencies (8 + 2 = 10) from the base 

1000 and obtain 1000 - 10 = 990. This is in left hand portion. 

Now multiply the two remainder numbers 8 and 2 to obtain the product 16. This is the right hand portion of the 

answer which when added to the left hand portion 990x1000, i.e. 990000  

 i.e. 990000 + 16 = 990016 

We have, for base 1000,              992 -  8 

                                                     998 -  2 

                                                 ---------------------- 

                         1000 - 10 / 16 = 990x1000 / 16 = 990000 / 16 =990000+16 = 990016 

i.e.                            992 x998 = 990016  

Illustration 3.  To multiply the numbers 975 and 985, where the base is 1000.  

    We have, 1000 as base,      

                                                   975  -  25 

                                                   985  -  15 

                                        ---------------------------------------- 

                                               1000- 40/ 375 = 960x 1000/ 375 = 960000/375 = 960375 

i.e       975 x 985 = 960375 

Illustration 4.  To multiply the numbers 9985 and  9988, where the base is 10000.  

We have, 10000 as base,   

                                                    9985 -   15 

                                                    9975  -  25 

                                           ------------------------------- 

                                         10000- 40 / 325 =  9960x1000 / 325 

i.e.   9985 x 9975  =  99600325 

18) The Sub-Sutras-“Proportionally” Provides for those cases where we wish to use as our base multiples of the 

normal base of the powers of 10. That is, whenever neither the multiplicand nor the multiplier is sufficiently near a 

convenient power of 10, which could serve as our base, we simply use a multiple of a power of 10 as our working 

base, perform our calculations with this working base and then multiply or divide the result proportionally.  

Example 1: To multiply 48 by 32, use as our base 50 = 100/2. 

We have, base 50,            48 -  2 

                                         32 - 18 

                                    ------------------------ 

                                  2/ 30/36 or (30/2) / 36 = 15/36 

i.e           48x32 = 1536 
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In this example, subtract sum of two deficiencies (2+18= 20) from the base 50 and obtain (50-20) 30 then divided 

by 2 (i.e 15) which is in left hand portion. Now multiplying remainders 2 and 18 (i.e 36) which is in right hand 

portion. Next multiply 15 by 100 and added 36, i.e 1536. 

 

Example 2 : To multiply 41 and 25,  use our base 50 = 100/2. 

               

We have, base 50,        41 -  9 

                                     25 - 25 

                                -------------------- 

                              2 / 16 / 225 or (16 /2) / 225 = 8/ 225 = 10/25 

 

i.e         41x25 = 1025 

Here only the left decimals corresponding to the powers of 10 digits (here 100) are to be effected by the 

proportional division of 2. These examples show how much easier it is to subtract a few numbers, (especially for 

more complex calculations) rather than memorize long mathematical tables and perform cumbersome calculations 

the long way. 

Squaring Numbers: The algebraic equivalent of the sutra for squaring a number is: 

  {a + (-b)}
 2
 = a

2
 + 2a(-b) + b

2 

 To square 103 we could write as: 

  (100 + 3)
2
 = 10,000 + 600 + 9 = 10,609 

 This calculation can easily be done mentally. Similarly, to divide 38,982 by 73, we can write the numerator as 

38 × 3 + 9 × 2 + 8x +2, where x is equal to 10 and the denominator is 7x +3. It doesn’t take much to figure out that 

the numerator can also be written as 35 × 3 + 36× 2 + 37x +12. 

Therefore, 38,982 / 73 = (35 × 3 + 36 × 2 + 37x +12) / (7x +3) = 5 × 2 + 3x + 4 =534. 

 

CONCLUSION  

 In this paper we have investigated the multiplication of two numbers by Vedic methods of mathematical sutras 

and sub- sutras for base on 10,100,1000,10000 which can use in quick solve for multiplication. The algebraic 

principle involved in the third sutra, “vertically and crosswise”, can be expressed, in one of its applications, as the 

multiplication of the two numbers represented by (ax + b) and (cx +d), with the answer acx
2
 +x (ad + bc) + bd. 
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ABSTRACT : 

In this paper, we introduce a new classes of sets called fuzzy �∗* -semi interior  and fuzzy �∗* - semi closure sets 

and its properties are established in fuzzy topological spaces. 

Keywords:  Fuzzy γ -semi open, fuzzy γ - semi closed, fuzzy  γ - semi interior, fuzzy γ -semi closure, fuzzy �∗-

semi open and fuzzy  �∗- semi closed. 

 

I.  INTRODUCTION 

 The concept of fuzzy sets operations were first introduced by L.A. Zadeh[3], let � be non empty set and � be 

the unit interval [0,1], a fuzzy set is a mapping �  into � . In 1968 Chang[1] introduced the concept of fuzzy 

topological space. Azad introduced the notions of fuzzy semi open and fuzzy semi closed sets and T.Noiri and O.R 

Sayed [2] introduced the notion of � open sets and � closed sets.  In this paper we introduce fuzzy �∗ semi interior 

and fuzzy �∗ - semi closure  and its properties are established in fuzzy topological spaces.  

 

II. PRELIMINARIES 

Through this paper (�, �) and (Y,�) denote fuzzy topological spaces. For a fuzzy set � in a fuzzy topological space 

� �� �. ��(�), ���(�), ��  denote the closure, interior, complement of � respectively. By 0�  and 1�  we mean the 

constant fuzzy sets taking on the values 0 and 1 respectively 

Definition: 2.1 (Fuzzy Sets) A fuzzy set is a function with domain � and values in �. That is an element of ��. let 

� ∈ ��. The subset of � in which � assumes non-zero values is known as the support of � for every � ∈ �, �(�) is 

called the grade of membership of � in �. And � is called carrier of the fuzzy set �. If � takes only 0 and 1, then � 

is a crisp set in �. 

Definition: 2.2 A fuzzy set � of (�, �) is called  

1. Fuzzy semi open (in short Fs open) if � ≤ ��  ��� (�)! and a fuzzy semi closed (in short Fs – closed) if 

��� " �� (�)!  ≤ �".  
2. Fuzzy preopen (in short Fp-open if � ≤ ���  ��(�)!  and a fuzzy pre closed (in short Fp-closed) if 

�� ���(�)! ≤ �. 
3. Fuzzy strongly semi open (in short Fss –open if � ≤ ���  ��(��� �)! and a fuzzy strongly semi closed (in short 

Fss-closed) �� (���  ��(�)! ≤ �. 
4. Fuzzy �-open if � ≤ #���  ��(�)!$ ∨  ��(��� �)!& fuzzy �-closed if �� ��� (�)! ∧ ���  ��(�)! ≤ �. 
5. Fuzzy �∗- semi open if ���(�) ≤ �� (� − ��� (�)) and fuzzy �∗- semi closed if  ��(�) ≥ ��� � − ��(�)!. 
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Fuzzy �∗ − semi interior 

Definition 2.3. Let (�, �) be a fuzzy topological space,then for a fuzzy subset � of �, the fuzzy �∗-semi interior of 

� (briefly�∗-(���(�)) is union of all fuzzy �∗-semi open sets of  � contained in �. (i.e)�∗(���(�) = ∨ {+: + ≤ �, + 

is fuzzy �∗-semi open in �} 

Proposition 2.4: Let (�, �) be a fuzzy topological space, then for any fuzzy subsets � and + of a fuzzy topological 

� we have(i) �∗ − (���(�) ≤ � (ii) � is fuzzy �∗ −semi open ⇔ �∗ semi ��� (�) = �. 

Proof: 

( i) It follows by above definition 2.3 

�∗(��� (�) is union of all fuzzy �∗ semi open sets of � which contained in �. 

ie) �∗(���(�) = ∨ {+: + ≤ �, + is fuzzy �∗-semi open in �},ie �∗-(���(�) = �. 

(ii) Let Assume � be fuzzy �∗ semi open set then � ≤ �∗ (���(�)by using (i) �∗(���(�) ≤ �. 
Therefore � =  �∗(���(�),Conversely, assume that � = �∗(���(�) by using definition 2.3.  

ie, � ≤  �∗(���(�),therefore  A is fuzzy semi open set. (ii) is proved.     

Proposition:2.5 

i) �∗(��� �∗ (���(�)! =  �∗ (��� (�) 

ii) � ≤ + then �∗(���(�) ≤  �∗(���(+) 

Proof  

(i) by Proposition 2.4 (i) & (ii)   �∗-(��� (�∗-(���(�)=�∗-(���(�).This proves (i). 

(ii) Since � ≤ + ,by (i) �∗(���(�) ≤ � ,i.e .�∗(���(�) ≤ � ≤ +, This implies�∗ (���(�)≤ B 

by (i) �∗(��� �∗(���(�)! ≤  �∗(���(+),ie �∗(���(�) ≤ �∗(���(+).hence proves (ii) 

Theorem: 2.6Let(�, �) be a fuzzy topological space then two any subset � and + of a fuzzy topological space we 

have�∗ (���(� ∧ +)! =  �∗(���(�)! ∧  �∗(���(+)! 

Proof:Since,� ∧ + ≤ +  and � ∧ + ≤ + by using proposition 2.5 (ii), we get�∗(���(� ∧ +) ≤  �∗(���(�) 

and�∗(���(� ∧ +) ≤  �∗(���(+)This implies that�∗ (���(� ∧ +)! ≤  �∗(���(�)! ∧  �∗(���(+)!  -----(1)                 

using proposition 2.4 (i) we have �∗(���(�) ≤ � and �∗(���(+) ≤ +implies that  �∗(���(�) ∧  �∗(���(+) ≤  � ∧
+, Now  applying proposition 2.5(ii), we get �∗(��� (  �∗(���(�) ∧  �∗(���(+)) ≤    �∗(���(� ∧ +) by 

(i)�∗(��� �∗(���(�)!  ∧ �∗(��� �∗(���(+)! ≤  �∗(���(� ∧ +),by proposition 2.5  

(ii) �∗(���(�)  ∧ �∗(���(+) ≤  �∗(���(� ∧ +)--------------------------------------------------------------------- (2) 

from (1) and (2) we have �∗(���(� ∧ +) = �∗(���(�) ∧ �∗(���(+) 

Theorem: 2.7 Let(�, �) be a fuzzy topological space then for any fuzzy subset � and + of a fuzzy topological 

space we have  �∗(���(� ∨ +) ≥ �∗(���(�) ∨  �∗(���(+) 

Proof: Since � ≤ � ∨ + and + ≤ � ∨ +.using proposition 2.5 (ii) we have�∗(���(�) ≤  �∗(���(� ∨ +)------ (1) 

and �∗(���(+) ≤  �∗(���(� ∨ +) ---------- (2),from (1) and (2) we have �∗(���(� ∨ +) ≥ �∗(���(�) ∨
 �∗(���(+).Hence proved. 

Following example shows that the quality need not be hold in theorem 2.7 

Example 2.8. let � = {/, 0, �}and � = 10,1, {/.2, 0.3, �.4}, {/.5, 0.6, �.6}, {/.5, 0.3, �.6}, {/.2, 0.6, �.4}7. Then( �, �) is a 

fuzzy topological space .The closed set of �� = 10,1, {/.2, 0.4, �.3}, {/.8, 0.9, �.9}, {/.8, 0.4, �.9}, {/2, 0.9, �.3}7.consider 

A={/.6, 0.3, �.6}  and B={/.3, 0.4, �.6} then �∗(���(�) = {/.3, 0.3, �.6} and �∗(���(+) = {/.5, 0.6, �.6}.That implies that  

�∗(���(�) ∨ �∗(���(+) = {/.3, 0.6, �.6}.Now � ∨ + = {/.6, 0.4, �.6}, it follows that �∗(���(� ∨ +) = {/.6, 0.2, �.6} 

then �∗(���(� ∨ +) ≰ �∗(���(�) ∨ �∗(���(+) thus �∗(���(� ∨ +) ≠ �∗(���(�) ∨ �∗(���(+) 
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III FUZZY �∗ SEMI CLOSURE 

Definition:3.1 Let (�, �) be a fuzzy topological space then for a fuzzy subset � of �, the fuzzy �∗-semi closure of 

� (briefly � − (��(�)) is the intersection of all fuzzy �∗-semi closed sets of  � contained in �. (i.e)�∗- (��(�) = ∧
{+: + ≥ �, + is fuzzy �∗-semi closed set in �} 

Proposition: 3.2 Let (�, �) be a fuzzy topological space, then for any fuzzy subsets � and + of a fuzzy topological 

� we have(i)  �∗(���(�)!� = �∗ (��(��) and (ii)  �∗ (�� (�)!� =  �∗(���(��). 

Proof: By using definition 3.1�∗ (���(�) = ∨ {+: + ≤ �, + is fuzzy �∗-semi open in �},taking compliment on both 

sides.We get 

 [�∗(���(�)]� = (sup{+: + ≤ �, + is fuzzy �∗semi open})� 

   = inf{+�: +� ≥ �� , +�  is fuzzy �∗semi closed} 

replacing +�by J,  we get[�∗(���(�)]� = ∧{J: J ≥ �� , J is fuzzy �∗semi closed} by definition  �∗(���(�)!� =
�∗ (��(��) .Hence proves (i). By using (i)[�∗(���(��)]� = �∗ (��(��)� 

[ �∗(���(��)]� = �∗ (��(�) .Taking complement on both sides we get  �∗ (�� (�)!� =  �∗(���(��).                           

Hence proved by (ii). 

Proposition: 3.3 

Let (�, �) be a fuzzy topological space, then for any fuzzy subsets � and + of a fuzzy topological space� we 

have(i) � ≤  �∗(��(�),(ii) � is fuzzy �∗ −semi closed  ⇔ �∗(��(�) = �.
 

Proof: 

( i) By using Definition 3.1,�∗ semi closure intersection of all �∗ semi closed sets contained in �.�∗ (�� (�) =
 ∧ {+: + ≥ �, + is fuzzy �∗semi closed} i.e.� ≤  �∗(��(�). 
(ii) Let� be fuzzy �∗ semi closed subset in �. By using proposition �� is also �∗ semi open set and again by 

proposition 3.2(ii) , �∗(���(��) = �� ⇔ [�∗ (�� (�)]K = �� ⇔ �∗ (�� (�) = �.  
Propositions :3.4 

Let (�, �) be a fuzzy topological space, then for any fuzzy subsets � and + of a fuzzy topological � we have  (i) 

�∗(��  �∗(��(�)! = �∗ (�� (�), (ii) If � ≤ + then �∗ (�� (�) ≤ �∗ (�� (+) 

Proof: By using 3.3 (ii) �∗(��  �∗(��(�)! = �∗ (�� (�),by proved (i). 

(ii) Suppose � ≤ + then +� ≤ �� by using proposition 3.2(ii) �∗ (���(+�) ≤ �∗(���(��) taking complement on 

both sides ,We get[�∗ (���(+�)]� ≥ [�∗ (���(��)]� 

by  proposition 3.3(ii) Implies �∗(��(+) ≥  �∗ (�� (�)  

This proves (ii). 

Theorem:  3.5 Let(�, �) be a fuzzy topological space then for any subset � and + of a fuzzy topological space we 

have �∗(��(� ∨ +) ≤ �∗(��(�) ∨  �∗(��(+) 

Proof: Since �∗(��(� ∨ +) = [�∗(��(� ∨ +)�]� by using proposition 3.3(i). 

We have �∗(��(� ∨ +) = [�∗(���(� ∨ +)�]�  = [�∗(��� (�� ∧ +�)]� 

by known proposition, we have, 

�∗ (��(� ∨ +) = [�∗(���(��) ∧ �∗(���(+�)]�  = [�∗(���(��)]� ∧ [�∗(���(+�)]� = �∗(��(��)� ∨ �∗(��(+�)� =
�∗(��(�) ∨ �∗(��(+) 

Theorem: 3.6 Let (�, �) be a fuzzy topological space then for any fuzzy subset � and + of a fuzzy topological 

space we have  �∗(��(� ∧ +) ≤ �∗(��(�) ∧  �∗(��(+) 
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Proof : Since � ∧ + ≤ �  and � ∧ + ≤ + by using proposition 3.4 (ii) we 

get�∗(��(� ∧ +) ≤ �∗(��(�)and �∗(��(� ∧ +) ≤ �∗(��(+). This implies �∗(��(� ∧ +) ≤ �∗(��(�) ∧ �∗(��(+). 

Hence proved. 

 

IV. CONCLUTION 

 Fuzzy �- closed set and fuzzy�- open set are play major role in fuzzy topology. Since its inception several weak 

forms of fuzzy �-closed sets and fuzzy �- open sets have been introduced in general fuzzy topology. The present 

paper is investigated in the new weak forms fuzzy �∗-semi interior and fuzzy �∗-semi closure in fuzzy topological 

spaces. Hence the propositions and theorems are justify the results. We hope that the findings in this paper will help 

researcher enhance and promote the further study on general fuzzy  topology to carry out a general framework for 

their applications in practical life. This paper, not only can form the theoretical basis for further applications of 

fuzzy topology , but also lead to the development of information systems. 
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1. INTRODUCTION AND PRELIMINARIES  

 Brouwer(1912) laid the foundation of fixed point theory by proving the result that the continuous mappings of 

an n-dimensional element into itself has a fixed point. Later on Schauder(1930) extended Brouwer’s result for 

infinite dimensional spaces. The first contractive definition is due to Banach . In 1922, a Polish mathematician 

Stenfan Banach proved the contraction principle, popularly known as Banach Contraction Principle, which states 

that “If T is a mapping of a complete metric space (X, d) into itself satisfying d(Tx, Ty) ≤ k d(x, y) for all x, y ∈ X 

and 0 ≤ k < 1, then T admits a unique fixed point.” This theorem was generalized by various authors including 

those of Ciric (1974), Edelstein(1961), Kannan(1968), Gahler(1963-66), Cronic, Ishikawa, Pathak (1995) and 

Wong(1973) etc. As a generalization of fixed point, the concept of coupled fixed point was introduced by Opoitsev 

([19]- [21]) and then by Guo and Lakshmikantham (see [7]) in connection with coupled quasi solutions of an initial 

value problem for ordinary differential equations. For other results on coupled fixed point theory see( [4-5], [12-

13], [18], [23-27] and [30-32]). The concept of Fuzzy set was published in 1965 by Zadeh[10], Prof. of Computer 

Science in Univ. of California. Some of the key contributors to the theory are Wyllis Bandler, Didier Dubois, Brian 

R. Gaines, Ladislav J. Kohout, Mari Nowakowska, Henri Prade, Ronald R. Yager and H. J. Zimmermann[8]. Using 

notion of fuzzy sets, Kramosil and Michalek[15] introduced the concept of fuzzy metric spaces. Many authors have 

studied fixed point theory in fuzzy metric spaces. George and Veeramani[1] modified the concept of fuzzy metric 

space which was introduced by Kramosil and Michalek[15]. In 1963, Gahler [16] introduced the concept of 2-

metric space akin to the metric space (X, d). But different authors proved that there is no relation between these two 

functions, for instance, Ha et al. in (1988) showed that 2-metric need not be continuous function, further there is no 

easy relationship between results obtained in the two settings. Motivated by the measure of nearness, between two 

or more objects with respect to a specific property or characteristic, called the parameter of nearness, in 1992, 

Dhage in his Ph.D. thesis introduced a new class of generalized metric space called D-metric space ([2],[3]). He 
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claimed that D-metrics provide a generalization of ordinary metric functions and went on to present several fixed 

point results. In 2006, Mustafa and Sims[33] have pointed out that Dhage’s notion of a D-metric space is 

fundamentally flawed and most of the results claimed by Dhage and others are invalid. In 2006, Mustafa and 

Sims[33] introduced a new structure of generalized metric spaces, which are called G-metric spaces as 

generalization of metric space (X, d), to develop and introduce a new fixed point theory for a various mappings in 

this new structure and demonstrated that most of the claims concerning the fundamental topological structure of D-

metric space by Dhage [3] are incorrect. Afterwards, they proved some fixed point results for mappings satisfying 

various contractive conditions on this newly defined space. Recently, Mustafa, Obiedat and Awawdeh(2008) 

proved fixed point results for mappings satisfying sufficient conditions on complete G-metric space and also 

showed that if the G-metric space(X, G) is symmetric, then the existence and uniqueness of these fixed point results 

follow from well-known theorems in usual metric space (X, dG), where (X, dG) is the usual metric space which 

defined from the G-metric space(X, G). In 2011, Shatanawi[24] proved a coupled coincidence fixed point theorem 

in the setting of a generalized metric space in the sense of Z. Mustafa and B. Sims[33]. In current time, the 

existence of common or coupled fixed points of a fuzzy version for multiple mappings has attracted much attention. 

In 2010, Sedghi et al. [17], proved coupled fixed point theorems for contractions in fuzzy metric spaces.. 

Choudhury et. al [6] established coupled coincidence point results for compatible mappings in partially ordered 

fuzzy metric space. After that common coupled fixed point results in fuzzy metric spaces were established by Hu 

[29]. Gordji, Cho and Baghani[13] established coupled fixed point theorems in intuitionistic fuzzy normed spaces. 

Sun and Yang[8] introduced the concept of Q-fuzzy metric space and obtained some properties related to this 

space. In 2012, Hu and Luo[28] introduced the concept of mixed g-monotone mapping and proved coupled 

coincidence and common coupled fixed point theorems for mappings under φ− contractive conditions in partially 

ordered generalized fuzzy metric spaces. Motivated by [28], we prove common coupled fixed point theorems for 

six mappings in generalized fuzzy metric spaces. 

 

PRELIMINARIES 

Definition1.1.[8]  A 3-tuple (X, G, ∗  ) is called a  generalized fuzzy  metric  space  if  X  is  an  arbitrary nonempty 

set, ∗  is a continuous t-norm and G is a fuzzy set on X
3
 × (0, ∞ ) satisfying the following conditions for each x, y, 

z ∈  X and s, t > 0 

1. G(x, y, z, t) > 0for all x, y ∈  X with x ≠ y ; 

2. G(x, x, y,t) ≥  G(x, y, z, t)  for all x, y, z ∈  X with y≠ z; 

3. G(x, y, z, t) = 1 for all x, y, z ∈  X and t > 0 if and only if x = y = z ; 

4. G(x, y, z, t) = G(p(x,y,z), t) where p is a permutation function; 

5. G(x, a, a, t) ∗  G(a, y, z, s) ≤  G(x, y, z,  t + s)  for all x, y, z, a ∈  X and  s, t > 0; 

6. for all x, y, z ∈  X , G(x, y, z, • ) : (0, ∞ ) →  [0, 1] is  continuous. 

Then (G, *) is called generalized fuzzy metric on X.  The function G(x, y, z, t) denote the degree of parameter of 

nearness among x, y and z with respect to t, respectively.  
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Definition 1.2[8]. Let (X, G,  ∗ ) be generalized fuzzy metric space.  Then  

(a)  a sequence {xn} in X is convergent to x∈X if, for all t > 0  limn→∞ G(xn, xn, x, t) = 1  

(b)  a sequence {xn} in X is a Cauchy if for all t > 0 and p, q > 0 limn→∞ G(xn, xn, xm, t) = 1  

(c)  A generalized fuzzy metric space in which every Cauchy sequence is convergent is said to be complete. 

Definition 1.3[8].  Self mappings A and B of fuzzy metric space (X,G, *) is said to be weakly compatible if                  

ABx = BAx when Ax = Bx for some x ∈  X. 

 Lemma 1.1[8].  In generalized fuzzy metric space X,  G(x, y, z, .) is non- decreasing for all x, y, z ∈  X. 

Lemma 1.2(see [8]). Let (X, G, ∗) be a G-fuzzy metric space. Then, G is a continuous function on X
3
× (0, ∞). 

Definition1.4. Let X be a nonempty set. An element (x,y) ∈ X × X is called a coupled fixed point of the mapping  

F : X × X → X if x =F(x,y) and y = F(y,x).  

Definition1.5. Let X be a nonempty set. An element (x, y) ∈ X × X is called  

(i) a coupled coincidence point of F : X × X → X and g : X → X if gx =F(x,y) and gy = F(y,x).  

(ii) a common coupled fixed point of F : X × X → X and g : X → X if x=gx=F(x,y) and y=gy=F(y,x).  

Definition1.6. Self mappings A and B of fuzzy metric space (X,G, *) is said to be weakly compatible if ABx = 

BAx when Ax = Bx for some x ∈ X. 

Define ∅ = 
φ: R
 → R
�, where  

R
 = �0, +∞�and each φ ϵ ∅ satis"ies the following conditions ∶ 

                                              (∅ − 1�     φ is strict increasing; 

(∅ − 2�     φ is upper semi − continuous from the right; 

                                              (∅ − 3�   ∑ φ1(t� < +∞ for all t > 0, where φ1
4(t� = φ5φ1(t�6.∞
189  

Lemma 1.3 [8] . Let (X,G,*) be a generalized fuzzy metric space and {yn} be a sequence in X. If there exists φϵ ∅ 

such that  

G5y1, y1, y1
4,φ(t�6 ≥ G(y1<4, y1<4, y1, t� ∗ G(y1, y1, y1
4, t� 

for all t>0 and n= 1,2,..., then {yn} is a Cauchy sequence in X. 

 

MAIN RESULTS : 

Theorem 2.1 :  Let (X,G, ∗) be a complete Generalized Fuzzy metric space where * is a continuous t-norm. Let P, 

Q : X ×X→X and A,B,S and T : X→X be six mappings satisfying the following conditions: 

(i)  P(X ×X) ⊆ ST(X)and Q(X ×X) ⊆ AB(X)   

(ii)  P and AB are continuous 

(iii) AB= BA, ST=TS,  

(iv) the pairs (P, AB) and (Q, ST) are weakly compatible. Also suppose 

(v)  if there exists φ ∈ ∅ such that 

G(P(x, y�, P(x, y�, Q(u, v�,φ(t�� ≥ G(ABx, ABx, STu, t� ∗ G(ABx, ABx, P(x, y�, t� ∗  G(STu, STu, Q(u, v�, t�  for all x, 

y,u, v ∈ X, t > 0.  

Then P,Q, A, B, S and T have a unique common coupled fixed point in X. 
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Proof Let x0 , y0  ∈ X.  From condition (i) there exists x1, x2 ∈ X  such that P(x0 , y0  )= STx1 = z0 , Q(x1 , y1  )= 

ABx2 = z1 and P(y0 , x0  )= STy1 = p0 , Q(y1 , x1  )= ABy2 = p1.  Inductively we can construct sequences 


x1�, 
y1�, 
z1� and 
p1�  in X such that P(x2n, y2n) = STx2n+1 = z2n,  Q(x2n+1, y2n+1) = ABx2n+2 = z2n+1 

 and  P(y2n, x2n) = STy2n+1 = p2n 

Q(y2n+1,  x2n+1) = ABy2n+2 = p2n+1    for all n ≥ 0. Now we prove  {zn} and {pn} are  Cauchy sequence in X. 

Step 1. Putting x = x2n, y =y2n, u = x2n+1, v = y2n+1  for x > 0 in (V) we have 

G5zE1, zE1, zE1
4,φ(t�6 = G5P(xE1, yE1�, P(xE1, yE1�, Q(xE1
4, yE1
4�,φ(t�6 

≥ G(ABxE1, ABxE1, STxE1
4, t� ∗ G(ABxE1, ABxE1, P(xE1, yE1�, t)∗ G(STxE1
4, STxE1
4, Q(xE1
4, yE1
4�, t� 

= G(z2n-1, z2n-1, z2n, t) * G(z2n-1, z2n-1, z2n, t) * G(z2n , z2n, z2n+1,t) 

= G(z2n-1, z2n-1, z2n, t) * G(z2n , z2n, z2n+1,t) 

Now, by Lemma 1.3, {zn}  is a Cauchy sequence in X which is complete. 

Putting x = y2n+1, y =x2n+1, u = y2n, v = x2n  for x > 0 in (3.5) we have 

G5pE1, pE1, pE1
4,φ(t�6 = G5P(yE1, xE1�, P(yE1, xE1�, Q(yE1
4, xE1
4�,φ(t�6 

≥ G(STyE1, STyE1, AByE1
4, t� ∗ G(STyE1, STyE1, P(yE1, xE1�, t)∗ G(AByE1
4, AByE1
4, Q(yE1
4, xE1
4�, t� 

= G(p2n-1, p2n-1, p2n, t) * G(p2n-1, p2n-1, p2n, t) * G(p2n , p2n, p2n+1,t) 

= G(p2n-1, p2n-1, p2n, t) * G(p2n , p2n, p2n+1,t) 

Now, by Lemma 1.3, {pn} is also a Cauchy sequence in X which is complete. 

Hence sequences {zn}  α , {pn}→ β and the subsequences {P(x2n, y2n)}, {STx2n+1 } , {Q(x2n+1, y2n+1)}  , {ABx2n+2 } 

of {zn}  converge to α and{P(y2n, x2n)}, {STy2n+1 } , {Q(y2n+1, x2n+1)}  , {ABy2n+2 } of {pn} converge to β. 

Since the pair (P,AB) is w- compatible, we have P(α, β) = AB α and P(β, α� = AB β 

Suppose that ABα ≠ α or ABβ ≠ β, 

G5ABα, ABα, α,φ(t�6 ≥ G5ABα, ABα, zE1
4,φ(kt�6 ∗ G5zE1
4, zE1
4,α,φ(t� − φ(kt�6 

≥ G5P(α, β�, P(α, β�, Q(xE1
4, yE1
4�,φ(kt�6 ∗ 1 

≥ G5P(α, β�, P(α, β�, Q(xE1
4, yE1
4�,φ(t� − φ(kt�6 

≥ G(ABα, ABα, α, t� ∗ G(ABα, ABα, P(α, β�, t� ∗ G(STxE1
4, STxE1
4, Q(xE1
4, yE1
4�, t� 

≥ G(ABα, ABα, α, t� ∗ G(ABα, ABα, ABα, t� ∗ G(α, α, α, t� 

            ≥ G(ABα, ABα, α, t� ∗ 1 ∗ 1 

            ≥ G(ABα, ABα, α, t� 

This implies ABα = α 

Similarly AB β = β. 

Thus P(α, β) = AB α = α and P(β,α� = AB β= β. 

Since P(X ×X) ⊆ ST(X), there exists a, b∈X such that P(α, β) =  α =STa and P(β, α� =  β = STb. 

G5α, α, Q(a, b�,φ(t�6 = G5P(α, β�, P(α, β�, Q(a, b�,φ(t�6

≥ G(ABα, ABα, STa, t� ∗ G(ABα, ABα, P(α, β�, t� ∗ G(STa, STa, Q(a, b�, t� 

≥ G(α, α, α, t� ∗ G(α, α, α, t� ∗ G(α, α, Q(a, b�, t� 

        ≥ 1 ∗ 1 ∗ G(α, α, Q(a, b�, t� 

        ≥ G(α, α, Q(a, b�, t� 
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This implies Q(a, b� = α = P(α, β) =  α =STa = AB α 

similarly Q(b, a� = P(β, α� =  β = STb = AB β. 

Since the pair (Q, ST) is w-compatible, we have ST α = Q(α, β� and ST β = Q(β, α�. 

Suppose that STα ≠ α or STβ ≠ β, 

G5α, α, STα,φ(t�6 = G5P(α, β�, P(α, β�, Q(α, β� ,φ(t�6 − −

≥ G(ABα, ABα, STα, t� ∗ G(ABα, ABα, P(α, β�, t� ∗ G(STα, STα, Q(α, β�, t� 

                                                      ≥ G5P(α, β�, P(α, β�, Q(xE1
4, yE1
4�,φ(kt�6 ∗ 1 

                                                ≥ G(α, α, α, t� ∗ G(α, α, α, t� ∗ G(α, α, α, t� ≥ 1 ∗ 1 ∗ 1 

This implies STα = α 

Similarly ST β = β. 

Hence Q(α, β� = α = P(α, β) =  α =ST α  = AB α 

similarly Q(α, β� = P(β, α� =  β = STβ =AB β. 

 

Now, 

G(P(Bα, Bβ�, P(Bα, Bβ�, Q(α, β� ,φ(t�

≥ G(ABBα, ABBα, STα, t� ∗ G(ABBα, ABBα, P(Bα, Bβ�, t� ∗ G(STα, STα, Q(α, β�, t� 

Since AB=BA , 

We have  AB(B α� = B(ABα� = Bα and P(α, β�  =   α this implies P(Bα, Bβ�  =  B α 

 

G(Bα, Bα, Q(α, β� ,φ(t�� ≥ G(Bα, Bα, α, t� ∗ G(Bα, Bα, Bα, t� ∗ G(α, α, α, t� 

G5Bα, Bα, α ,φ(t�6 ≥ G(Bα, Bα, α, t� ∗ 1 ∗ 1 

This implies Bα = α,  similarly  Bβ = β. 

Since α = ABα, we have α =A α 

Similarly, β = ABβ = Aβ. 

Now, 

G(P(α, β�, P(α, β�, Q(Tα, Tβ� ,φ(t��

≥ G(ABα, ABα, STTα, t� ∗ G(ABα, ABα, P(α, β�, t� ∗ G(STTα, STTα, Q(Tα, Tβ�, t� 

Since ST=TS , 

We have  ST(T α� = T(STα� = Tα and Q(α, β�  =   α this implies Q(Tα, Tβ�  =  T α 

 

              G(α, α, Tα ,φ(t�� ≥ G(α, α, Tα, t� ∗ G(α, α, α, t� ∗ G(Tα, Tα, Tα, t� 

             G5α, α, Tα ,φ(t�6 ≥ G(α, α, Tα, t� ∗ 1 ∗ 1 

This implies Tα = α,  similarly  Tβ = β. 

Since α = STα, we have α = S α 

Similarly, β = STβ = Sβ. 

Hence (α, β� is common coupled fixed point of P, Q, A,B, S and T.  
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Let (α∗, β∗� be another common coupled fixed point of P, Q, A,B, S and T. We have 

G5α, α, α∗,φ(t�6 = G5P(α, β�, P(α, β�, Q(α∗, β∗�,φ(t�6

≥ G(ABα, ABα, STα∗, t� ∗ G(ABα, ABα, P(α, β�, t� ∗ G(STα∗, STα∗, Q(α∗, β∗�, t� 

                                            ≥ G(α, α, α∗, t� ∗ G(α, α, α, t� ∗ G(α∗,α∗, α∗, t� 

                                            ≥ G(α, α, α∗, t� ∗ 1 ∗ 1 

                                            ≥ G(α, α, α∗, t� 

This implies α = α∗. 

Similarly β = β∗. 

Hence (α, β� is the unique common coupled fixed point of P, Q, A,B, S and T. 

Now, we will show that α =  β. 

Suppose  α ≠ β. 

G(P(α, β�, P(α, β�, Q(β,α� ,φ(t�� ≥ G(ABα, ABα, STβ, t� ∗ G(ABα, ABα, P(α, β�, t� ∗ G(STβ, STβ, Q(β,α�, t� 

G( α, α, β,φ(t�� ≥ G(α, α, β, t� ∗ G(α, α, α, t� ∗ G(β, β, β, t� 

                                                G5 α, α, β,φ(t�6 ≥ G(α, α, β, t� ∗ 1 ∗ 1 

                                                G5 α, α, β,φ(t�6 ≥ G(α, α, β, t� 

This implies α =  β. 

Thus α = Sα = Tα = P(α, α� = Aα = Bα = Q(α, α�, that is, the common coupled fixed point of P, Q, A,B, S and T 

has the form (α, α�. 

   If we put B = T = I in Theorem 2.1, we have the following : 

Corollary 2.1. Let  P, Q, A and S be self mappings of X satisfying the following conditions: 

Let P, Q : X ×X→X and A and S : X→X be four mappings satisfying the following conditions: 

(i) P(X ×X) ⊆ S(X)and Q(X ×X) ⊆ A(X)   

(ii) P and A are continuous 

 (iii) the pairs (P, A) and (Q, S) are weakly compatible. Also suppose 

(v) if there exists φ ∈ ∅ such that 

G(P(x, y�, P(x, y�, Q(u, v�,φ(t�� ≥ G(Ax, Ax, Su, t� ∗ G(Ax, Ax, P(x, y�, t� ∗  G(Su, Su, Q(u, v�, t�  for all x, y,u, v ∈ 

X, t > 0.  

Then P,Q, A and S have a unique common coupled fixed point in X. 

                               If we put P = Q = f and A = S = g and B = T = I in Theorem 2.1, we have the following :  

Corollary 2.2.  Let  f, g  be self mappings of X satisfying the following conditions: 

Let f : X ×X→X and A and g : X→X be four mappings satisfying the following conditions: 

(i) f(X ×X) ⊆ g(X)   

(ii) f and g are continuous 

(iii) the pair (f,g) is weakly compatible. Also suppose 
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 (iv) if there exists φ ∈ ∅ such that 

G(f(x, y�, f(x, y�, g(u, v�,φ(t�� ≥ G(gx, gx, gu, t� ∗ G(gx, gx, f(x, y�, t� ∗ G(gu, gu, f(u, v�, t�   

for all x, y,u, v ∈ X, t > 0.  

Then f and g have a unique common coupled fixed point in X. 
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ABSTRACT : 

Mishra (1952) studied hyper-asymptotic curves on a Riemannian hypersurface. Further, Tsagas (1969) has 

studied special curves of a Hyper-surface of Riemannian space. Also, Negi (Jan-June., 2017) defined and 

studied Union and Special curves on a Kaehlerian hyper-surface. In this paper, we have defined and studied 

hyper-asymptotic curves on a Kaehlerian hyper-surface and several theorems have been obtained. 

Keywords : Hyper-asymptotic, Special curves, Hyper-surface and Kaehlerian Space.  
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1.  INTRODUCTION 

Let us consider a ��= 2�� > 2 dimensional complex manifold �	
 of differentiability class ���� with respect to 

an allowable coordinate system: 

     
��, ��̅� ≡ ���, �	, … . �
��, ���, �	� … . �
���������. 

As we shall use the following variations of the indices:  

                { �, j, k, … . . = 1, 2, … . . n + 1;   ı,̅ ȷ,̅ k�, … . =  1�, 2�, … . . n + 1������� }      

 and          {α, β, γ,….. = 1, 2, ….., n;  α�, β�, γ�,….. =  1�, 2�, ….. n�.} 
  If there exists a mixed tensor )�*
��, ��̅� of class��, which satisfies 

(1.1) )+�)�* = −-+*, 

And with Riemannian metric g�+ satisfying: 

(1.2) /0	 = g�1̅��, �̅�/��/�1̅, 

Which also satisfy the condition, 

(1.3) ∇+)�* + ∇�)+* = 0, 

Then, the space is called an almost Kaehlerian space. If the conditions 

(1.4) 
4567

468469 + 46:
469 g*;<=g+; − 467

46: g=;<�g+; = 0 

And 

(1.5) 
>5?@�

>?A̅ >?B̅ + >?C�
>?B̅ gD�E ∂G�gHE̅ − >?@�

>?C� gG�E ∂I̅gHE̅ = 0   

are satisfied, then the space is said to be a Kaehlerian space. We shall denote such a space by J
��K . 

             Let an n-dimensional hyperspace J
K given by the equation relating, Negi (Jan-June, 2017):                            �� = ���LM��� = 1,2, … , � + 1, N = 1,2, … , �� 

                        ��̅ = ��̅�LM� ��O̅ = 1�, 2�, … , � + 1�������, N� = 1�, 2�, … , ��� 



 

AJMI 10(1), Jan-June, 2018  U. S. Negi 

-160- 

 

be immersed in a Kaehlerian space J
��K . The first two Frenet’s formulae of a curve �LM = LM�0�, LM� = LM� �0�� (of 

the hypersurface) are given by: 

(1.6a)             
PQ�R�9

P; = S���T���� ,    PQ�R�U̅
P; = S̅���T����̅       and 

(1.6b)            
PQ�V�9

P; = −S���T�W�� + S�	�T�	�� ,    PQ�V�U̅
P; = −S̅���T�W��̅ + S̅�	�T�	��̅   

 

Where,             XT�W�� Y≡ Z69
Z; [ , T�W��̅ Y≡ Z6 U̅

Z; [\,         
T���� , T����̅ �, �T�	�� , T�	��̅ �, 

are the components of unit tangent, unit principal normal vector and unit first binormal vector, �S���, S̅���, S�	�, S̅�	�� 

are the first and second curvatures of the curve. 

          The components �]�, ]�̅�  and �^M , ^M� �  of the first curvature vectors with respect to J
��K  and J
K                            

are related by 

 

(1.7a)             ]� = ^M_M� + J
∗a�,          and           (1.7b)        ]�̅ = ^M� _M��̅ + J�
∗a�̅,    

Where,            _M� = 469
4bc , _M��̅ = 46 U̅

4bc�   . 
          (a�, a�̅) are the components of unit normal vector and �d
∗, d�
∗� is the normal curvature of the hypersurface in 

the direction of the curve. 

           Consider two congruences of the curves given by �e, e̅� and �f, f̅�, which are such that at the point of J
K , 

we have  

(1.8a)                          e� = gM_M� + �a� ,   e�̅ = gM� _M��̅ + �̅a�̅          and 

(1.8b)                          f� = 0M_M� + ha� ,   f�̅ = 0M� _M��̅ + h�a�̅. 
 

2.  HYPER-ASYMPTOTIC CURVE 

 A hyper asymptotic curve of (order one) relative to a congruence�f, f̅� in Riemannian space is characterized by 

Mishra (1952). Consequently, we have 

(2.1a)                               f� = L���T�W�� + ����T�	�� , 

(2.1b)                              f�̅ = L���T�W��̅ + ��̅��T�	��̅ . 

       From the first two Frenet’s Formulae Refer (1.6a) and (1.6b), we deduce 

(2.2a)                          i]� i0⁄ = −J���	 T�W�� + X ZZ; 
log J����\ ]� + J���J�	�T�	��  

(2.2b)                          i]�̅ i0⁄ = −J����	 T�W��̅ + X ZZ; 
log J�����\ ]�̅ + J����J��	�T�	��̅  

       Another expression for �i]� i0⁄ , i]�̅ i0⁄ � will be obtained by (1.7a) and (1.7b) and the relating Mishra 

(1952) 

 (2.2c)                        
Pmc9P; = nMm�Zbo

Z; �a�,     PmcU̅P; = nM�m� �Zbo�
Z; �a�̅        and 

(2.2d)                       
PpP;

� = −nmqgmM_M� Zbr
Z; ,   PpU̅

P; = −nm�q�gm�M� _M��̅ Zbr�
Z; .   

      This later expression for �i]� i0⁄ , i]�̅ i0⁄ � and equations (2.1a), (2.1b), (2.2a) and (2.2b) may be used in 

the elimination of �T�	�� , T�	��̅ � with the help of (1.7a), (1.7b), (1.8a) and (1.8b) gives 

(2.3a)         0M = L��� Zbc
Z; + s tPuc

P; − J
∗nmqgmM Zbr
Z; − ucZ
vwx y�V��Z; + J���	 Zbc

Z; z, 

(2.3b)         0M� = L��� Zbc�
Z; + s tPuc�

P; − J�
∗nm�q�gm�M� Zbr�
Z; − uc� Z
vwx y��V��Z; + J����	 Zbc�

Z; z, 
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(2.4a)         h = s tnMm Zbo
Z; + Zy{∗Z; − J
∗ Z
vwx y�V��Z; z,      Where  s = 6�V�y�V�y�5�.                           

(2.4b)        h� = s tnM�m� Zbo�
Z; + Zy�{∗Z; − J�
∗ Z
vwx y��V��Z; z,     Where  s� = 6̅�V�y��V�y��5�. 

          Let 
|�W�M , |�W�M� �, �|���M , |���M� �  and �|�	�M , |�	�M� �  be the unit tangent, unit principal normal, unit first binormal 

vectors and 
S���, S̅����, �S�	�, S̅�	�� be the first and second curvatures of the curve with respect to the hyper surface. 

      We obtain from first two Frenet’s formulae with respect to d
K yield 

 (2.5a)                i^M i0⁄ = −S���	 Zbc
Z; + ucZ
vwx y�V��Z; + S���S�	�|�	�M , 

(2.5b)               i^M� i0⁄ = −S̅���	 Zbc�
Z; + uc� Z
vwx y��V��Z; + S̅���S̅�	�|�	�M� . 

    From equations [( J���	 = S���	 + J
∗	    and      J����	 = S̅���	 + J�
∗	, relating  

     Negi (Jan-June, 2017)], (2.4a), (2.4b), (2.3a), (2.3b), (2.5a), (2.5b) and the  

     definitions 

                               cos � = ��x�� ;c ��o�� �
� , �x����  ;c�  ��o��� �

�̅ �,  

 

             We deduce   L��� = �� cos � , �̅ cos ��,     and 

 

     (2.6a)                  �nMm^q Zbo
Z; + Zy{∗Z; − J
∗ Z
vwx y�V��Z; � Y0M − � cos � Zbc

Z; [                                  

 

                         = h �J
∗	 Zbc
Z; + ucZ�vwx��V���V��

Z; + S���S�	�|�	�∗ −  J
∗nmqgMm Zbr
Z; � 

 

     (2.6b)                  �nM�m� ^q� Zbo�
Z; + Zy�{∗Z; − J�
∗ Z
vwx y��V��Z; � Y0M� − �̅ cos � Zbc�

Z; [                                  

 

                           = h� �J�
∗	 Zbc�
Z; + uc� Z�vwx���V��� �V��

Z; + S̅���S̅�	�|�	�∗ − J�
∗nm�q�gM�m� Zbr�
Z; � 

Theorem (3.1): A hyper-asymptotic curve relative to �f, f̅� is characterized by equations (2.6a), (2.6b). 

Proof: Multiplying equation (2.6a) by g�� ^� and equation (2.6b) by gM��̅^�̅
 and simplifying, we obtain       

             

           nMm^M YZbo
Z; [ �� cos � + �y{∗��V� � = ����V�Z�vwx��V���V��

Z; − y{∗ � �wE �  Z�vwx   �{∗  ��V��
Z; �, 

Where,  we have defined             cos � = xco uc;o
��V� � ,                  

And                     

               nM�m� ^M� �Zbo�
Z; � ��̅ cos � + ��y�{∗���V� � = ������V�Z�vwx���V��� �V��

Z; − y�{∗ �̅ �wE � Z�vwx �� {∗�� �V��
Z; �, 
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Where,  we have defined 

                              cos �� = xα�β�  uc�;o�
���V�  �̅ . 
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ABSTRACT : 

A two-unit cold standby system with regular as well as visiting repairmen is studied. On failure of a unit, the 

repair is undertaken by the regular repairman who always remains with the system. The regular repairman 

while repairing the failed unit may get tired after some time and then the nature of the fault is discussed by an 

outside expert repairman telephonically and accordingly he himself comes or sends his assistant (an ordinary 

repairman). Various measures of system effectiveness are obtained. Profit is evaluated for a particular case.  

Keywords: Cold-standby, Regular and two types of visiting repairmen, Telephonic discussion, Rest period, Profit  

analysis 

 

INTRODUCTION 

 Reliability of two-unit systems taking various assumptions has been studied by various researchers in the field 

of reliability. Most of these studies including [1-9, 11] considered the repairman as perfect i.e. a repairman who 

repairs tirelessly and flawlessly. Some of the studies such as Kumar et al. [6], Parasher and Taneja [9], Mokkadis et 

al.[3], incorporated the concept of assistant of a repairman wherein the repair is first undertaken by the assistant 

repairman after getting instructions given by his master. However, there may be situations where the expert 

repairman may discuss the nature of failure to decide whether he himself should go or to send his assistant 

repairman. This concept has been discussed by Taneja [10] with patience time. However, it may not be 

economically advisable to wait up to certain time and hence the expert may be called as soon as the assistant 

declares himself unable to repair. 

Keeping the above in view, the present paper is devoted to study a two-unit cold standby system incorporating the 

idea of a regular repairman who always remains with the system and two types of visiting repairman i.e. an expert 

and his assistant.  The failed unit is first undertaken by the regular repairman who may get tired while repairing the 

failed unit or may not be able to do some complex repairs. If the regular repairman gets tired or declares himself 

unable to repair the unit, an outside expert repairman is contacted who first discusses the nature of the failure 

telephonically to decide whether he himself should go or to send his assistant repairman. It has also been assumed 

that the assistant repairman may also not be able to do some complex repairs. If the regular/assistant repairman 

finds himself unable to complete the repair or if the system becomes inoperable, then expert himself comes to repair 

the unit and he repairs all the units which fail during his stay at the system.  This model is compared with the model 

there is no provision of assistant repairman. 

Various measures of system effectiveness such as mean time to system failure, steady state availability, busy period 

analysis of the assistant/expert repairman, expected number of visits by the assistant/expert repairman, expected 
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discussion time and expected profit earned by the system are determined.  Profit of this model is also compared 

graphically with the model wherein there is no provision of assistant repairman.  

 

NOTATIONS 

λ          constant failure rate 

a the probability that the regular/assistant repairman is able to repair the failed unit 

b the probability that the regular repairman does not need rest  

p  = ab 

q = a(1−b) 

p1 the probability that the regular repairman is available on the completion of repair by the assistant/expert 

repairman  

q1 the probability that the regular repairman is not available 

p2 the probability that the expert after discussing the nature of failure himself comes to repair 

q2 the probability that the expert after discussing the nature of the failure sends his assistant to repair 

g(t),G(t) p.d.f. and c.d.f. of the repair time of the regular repairman 

ga(t),Ga(t) p.d.f. and c.d.f. of the repair time of the assistant repairman 

ge(t),Ge(t) p.d.f. and c.d.f. of the repair time of the expert repairman 

h1(t), H1(t) p.d.f. and c.d.f. of the discussion time 

 

SYMBOLS FOR THE STATES OF THE SYSTEM : 

o operative unit and regular repairman is available 

on operative unit (suffix n represents that regular repairman not available) 

cs cold standby 

Fr failed unit under repair of the regular repairman 

Fwd failed unit waiting for repair while discussions are going on  

Fra failed unit under repair of the assistant repairman  

Fre failed unit under repair of the expert repairman 

FRe repair of the failed unit is continuing by the expert repairman from the previous state 

Fw failed unit waiting for repair of the expert. 

 

TRANSITION PROBABILITIES AND MEAN SOJOURN TIMES 

The state transition diagram is shown as in Fig.1. The epochs of entry into states 0, 1, 2, 3, 4, 5 and 6 are 

regeneration points and hence these states are regenerative states.  States 4 and 7 are down states.  

The transition probabilities are :− 

q01(t) = λ e
−λt

  ;   q10(t) = p e
−λt

 g(t) 

q12(t) = q e
−λt 

g(t) ; q13(t) = (1−a) e
−λt

 g(t) 

q14(t) = λ e
−λt

G(t) ; q23(t) = p2 e
−λt

 h1(t) 

q24(t) = λ e
−λt

H1(t); q25(t) = q2 e
−λt

 h1(t) 

q30(t) = p1 e
−λt

 ge(t) ; q36(t) = q1 e
−λt

 ge(t) 

q37(t) = λ e
−λt

Ge(t) ; q33
(7)

(t) = [λ e
−λt 1] ge(t) =  [1−e

−λt
] ge(t)  

q43(t) = ge(t) ;   q50(t) = p1a e
−λt

 ga(t) 

q53(t) = (1−a) e
−λt

ga(t) ; q54(t) = λ e
−λt

Ga(t)  
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q56(t) = q1 ae
−λt

 ga(t) ;  q61(t) = p1 λ e
−λt

 

q62(t) = q1 λe
−λt

          (1 − 19) 

The non-zero elements pij are given by  

p01 = 1  ;   p10 = pg*(λ) 

p12 =  qg*(λ);  p13 = (1−a)g*(λ) 

p14 = 1−g*(λ);  p23 = p2h1*(λ)  

p24 = 1−h1*(λ);  p25 = q2h1*(λ) 

p30 = p1ge*(λ);  p36 = q1ge*(λ) 

p37 = 1−ge*(λ);  p33
(7)

 = 1−ge*(λ) 

p43 = 1   ;     p50 = p1aga*(λ) 

p53 = (1−a)ga*(λ); p54 = 1−ga*(λ)  

p56 = q1aga*(λ);  p61 = p1 

p62 = q1 .           (20 − 38)  

By these transition probabilities, it can be verified that  

p01 = 1 ;    p10+ p12+ p13+ p14 =   

 

 

Fig. 1 

p23+ p24+ p25 =  1;  p30+ p36+ p37 =1  

p30+ p36+ p33
(7)

 =1;  p43 =  1  

p50+ p53+ p54+ p56 = 1; p61+ p62 =  1        (39 − 46) 

The mean sojourn times (µi) are  

µ0 = 
λ

1
 ;    µ1 = 

λ

λ− )(*g1
 

µ2 = 
λ

λ− )(*h1 1
 ;  µ3 = 

λ

λ− )(*g1 e
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µ4 = −ge* ′(0) ;  µ5 = 
λ

λ− )(*g1 a
 

µ6
 
= 

λ

1
 = µ0          (47 − 53) 

 

The unconditional mean time taken by the system to transit for any state j when it is counted from epoch of 

entrance into state i is mathematically stated as : 

 mij =  ∫
∞

0

t qij(t)dt  = −qij* ′(0)               (54) 

Thus,  

m01 =µ0 ;     m10+ m12+ m13+ m14 = µ1 

m23+ m24 + m25 = µ2 ;   m30+ m36+ m37 = µ3 

m30+ m36+ m33
(7)

 = µ4 ;  m43 = µ4 ;  

m50+ m53+ m54+ m56 = µ5;    m61 + m62 = µ6     

          (55 − 62) 

Mean Time to System Failure  

By probabilistic arguments, we obtain the following recursive relations for φi(t) :  

φ0(t) = Q01(t)(s) φ1(t) 

φ1(t) = Q10(t)(s)φ0(t) + Q12(t) (s)φ2(t) + Q13(t)(s)φ3(t) + Q14(t) 

φ2(t) = Q23(t)(s)φ3(t) + Q24(t) + Q25(t)(s)φ5(t) 

φ3(t) = Q30(t)(s)φ0(t) + Q36(t)(s)φ6(t) + Q37(t) 

φ5(t) = Q50(t)(s)φ0(t) + Q53(t)(s)φ3(t) + Q54(t) + Q56(t)(s)φ6(t) 

φ6(t) = Q61(t)(s)φ1(t) +Q62(t)(s)φ2(t)        (63 − 68)  

 

Taking Laplace-Stieltjes Transforms of these relations and solving them for φ0**(s), the mean time to system 

failure (MTSF) when the system starts from the state ‘0’ is  

 T0 = 
0s

lim
→

 
s

)s*(*1 0φ−
 = N/D              (69) 

where 

N = [(p10 + p14) (1−p23p36p62) − p62p25(p56 + p36p53) (p10+ p14) 

 + p25p12(p50 + p53p30) + p30(p13+p12p23) + p62p13p24p36 

 + p62p25p13{p56(p30− p37) + p36(p54−p50)} 

 + p13p36 + p12{p23p36 + p25(p56+ p36p53)}]µ0 

 + [1−p62{p23p36+ p25(p56 + p36p53)}]µ1 

 + (p12+ p62p13p36)µ2 + [p13(1−p25p56p62) + p12(p23+ p25p53)]µ3 

 + p25(p12+ p13p36p62)µ5 

D = p12[p37(p23 + p25p53) +  (p24+p25p54)] + p14+ p13p37 

 + p62[p13(p24p36 + p25p36p54 − p13p25p37p56)−p14(p23p36  

  + p25p56+ p25p36p53)]        (70−71) 
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Availability Analysis 

The availability Ai(t) is seen to satisfy the following recursive relations:− 

A0(t) = M0(t) + q01(t) A1(t) 

A1(t) = M1(t)+q10(t)A0(t) + A12(t)A2(t) + q13(t)A3(t)+q14(t)A4(t) 

A2(t) = M2(t) + q23(t) A3(t) + q24(t) A4(t) + q25(t)  A5(t)  

A3(t) = M3(t) + q30(t) A0(t) + q36(t) A6(t) + q33
(7)

(t)  A3(t)  

A4(t) = q43(t)  A3(t)   

A5(t) = M5(t) + q50(t)  A0(t) + q53(t) A3(t) + q54(t)  A4(t) 

  + q56(t)  A6(t) 

A6(t) = M6(t) + q61(t)  A1(t) + q62(t) A2(t)      (72 − 78) 

where 

M0(t) = e
−λt

 ,  M1(t) = e
−λt

G(t), M2(t) = e
−λt

 H1(t) , M3(t) =e
−λt

Ge(t) 

M5(t) = e
−λt

Ga(t) ,  M6(t) = e
−λt

        (79 − 84) 

 

Taking the Laplace transforms of the above equations and solving them for A0*(s), In steady state availability of the 

system is given by  

 A0 = N1/D1          (85) 

where 

N1 = (p30 + p36)[(1−p25p56p62)(µ0+ µ1) + µ0p12p25(p61 − p56)+p12µ2] 

       −µ0p36[{p25(p53+p54)+(p23+p24}( p62+p61p12) + p61(p13+p14)] 

      −(p24+p25p54)[p12µ3+p36(p62µ1−p12µ0)]+(p13+p12p23)(µ3+p36µ0)+  

         p14[µ3(1−p25p56p62)+p36{µ0+p62(µ2+p25µ5)}]+p25[p62p13(µ5p36−µ3p56) 

−p53p36(µ1p62+µ0)− p12{µ3p53+µ5(p30+p36)}] + p36p62(µ2p13−µ1p23) 

D1 = µ0[(1−p33
(7)

){p10(1−p56p62p25) + p12p25p50} +(p23+p24) 

         {p12p30 − p10p36p62}+(p53+p54)p25{p12p30 − p10p36p62} 

      + (p13+p14){p30+p62p25(p50p36 − p56p30)}+ (1−p10)p36 

    + p25{p12(p56p30−p36p50) + (p13+p14)p36(p53+p54)}] 

    + µ1[p30+p36p61 + p36p62p25(p50+p56) − p56p62p25(p30+p36)] 

    + µ2[p12(p30+p36)+p36p62(p13+p14)] + µ3[p12(p23+p24)+(p13+p14)(1 

   − p56p62p25)+ p25p12(p53+p54) +p24{p36p62(1−p10) +p12p30} 

   + p14{p62p25(p50p36 − p56p30)+p30} + p25p54(1+p61p12p36)] 

   + µ5[p12p25(p30+p36) + p62p25p36 (p13+p14)]       (86−87) 

 

Busy Period Analysis of the Expert Repairman (Repair Time only) 

Letting Bi
e
(t) be the probability that the repairman  

B0
e
(t) = q01(t)  B1

e
(t)   

B1
e
(t) = q10(t)   B0

e
(t) + q12(t) B2

e
(t) + q13(t) B3

e
(t)+q14(t)B4

e
(t) 

B2
e
(t) = q23(t) B3

e
(t) + q24(t) B4

e
(t) + q25(t) B5

e
(t)  

B3
e
(t) = W3(t) + q30(t)  B0

e
(t) + q36(t)  B6

e
(t) + q33

(7)
(t)B3

e
(t)  

B4
e
(t) = W4(t) + q43(t) B3

e
(t)  

B5
e
(t) = q50(t)  B0

e
(t) + q53(t) B3

e
(t) + q54(t) B4

e
(t) +q56(t)B6

e
(t) 

B6
e
(t) = q61(t) B1

e
(t) + q62(t) B2

e
(t)        (88 −94) 
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where   W3(t) = W4(t) = Ge(t)         (95) 

Taking L.T. of the above equations and solving them for B0
e
*(s),  

In steady state, the total fraction of time for which the system is under repair of the expert repairman is given by  

 B0
e
 =  N2/D1          (96) 

where 

N2 = µ3[(p13+p14)(1−p25p56p62) + p12{p25(p53+p54) + (p23+p24)} 

         + p36p62 {p13(p24+p25)−p14p23}+(1−p33
(7)

){p12(p24+p25p54) 

         + p14(1−p25p62)} −p14p25p53p36p62]        (97) 

 

Busy Period Analysis of the Assistant Repairman 

By probabilistic arguments, we have the following recursive relations for Bi
a
(t) : 

B0
a
(t) = q01(t)  B1

a
(t)  

B1
a
(t) = q10(t) B0

a
(t) + q12(t)  B2

a
(t) + q13(t) B3

a
(t) +q14(t)B4

a
(t) 

B2
a
(t) = q23(t) B3

a
(t) + q24(t)B4

a
(t) + q25(t)B5

a
(t)  

B3
a
(t) = q30(t)  B0

a
(t) + q36(t)  B6

a
(t) + q33

(7)
(t) B3

a
(t)  

B4
a
(t) = q43(t) B3

a
(t)  

B5
a
(t) = W5(t) + q50(t) B0

a
(t) + q53(t)B3

a
(t) + q54(t) B4

a
(t)  

                + q56(t)B6
a
(t)  

B6
a
(t) = q61(t) B1

a
(t) + q62(t) B2

a
(t)             (98−104) 

where  

 W5(t) = e
−λt

Ga(t)         (105) 

Taking L.T. of the above equations and solving them for B0
a
*(s),  

In steady state, the total fraction of time for which the system is under repair of the assistant repairman is given by  

B0
a
 = N3/D1          (106) 

where 

N3 = p25[p36p62(p13+p14) + p12(p30 +p36)]µ5       (107) 

 

Expected Number of Visits by the Expert Repairman 

By probabilistic arguments, we have the following recursive relations for Vi
e
(t) :− 

V0
e
(t) = Q01(t)(s)V1

e
(t)  

V1
e
(t) = Q10(t) (s)V0

e
(t) + Q12(t)(s)V2

e
(t) + Q13(t)(s)[1+V3

e
(t)] 

   + Q14(t)(s)[1+V4
e
(t)] 

V2
e
(t) = Q23(t)(s)[1+V3

e
(t)] + Q24(t)(s)[1+V4

e
(t)] + Q25(t)(s)V5

e
(t) 

V3
e
(t) = Q30(t)(s)V0

e
(t) + Q36(t)(s)V6

e
(t) + Q33

(7)
(t)(s)V3

e
(t) 

V4
e
(t) = Q43(t)(s)V3

e
(t) 

V5
e
(t) = Q50(t)(s)V0

e
(t) + Q53(t)(s)[1+V3

e
(t)] + Q54(t)(s)[1+V4

e
(t)  

    + Q56(t)(s)V6
e
(t)  

V6
e
(t) = Q61(t)(s)V1

e
(t) + Q62(t)(s)V2

e
(t)              (108−114) 

Taking L.S.T. of the above equations and in steady state, the number of visits per unit time by the expert is given by  

 V0
e
 = N4/D1          (115)  

where 

N4 = (p30+p36) [(p13+p14)(1−p25p56p62) + p12(p23+p24)  
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 + p12p25(p53+p54)]         (116) 

Expected Number of Visits by the Assistant Repairman 

The following recursive relations for Vi
a
(t)  are obtained :− 

V0
a
(t) = Q01(t) (s) V1

a
(t)  

V1
a
(t) = Q10(t)(s)V0

a
(t) + Q12(t)(s) V2

a
(t) + Q13(t)(s)V3

a
(t) 

   + Q14(t)(s)V4
a
(t)  

V2
a
(t) = Q23(t)(s)V3

a
(t) + Q24(t)(s)V4

a
(t) + Q25(t)(s)[1+V5

a
(t)] 

V3
a
(t) = Q30(t)(s)V0

a
(t) + Q36(t)(s)V6

a
(t) + Q33

(7)
(t)(s)V3

a
(t)  

V4
a
(t) = Q43(t)(s)V3

a
(t) 

V5
a
(t) = Q50(t)(s)V0

a
(t) + Q53(t)(s)V3

a
(t) + Q54(t)(s)V4

a
(t)  

    + Q56(t)(s)V6
a
(t)  

V6
a
(t) = Q61(t)(s)V1

a
(t) + Q62(t)(s)V2

a
(t)             (117−123) 

Taking L.S.T. of the above equations and solving them for V0
a
**(s), 

In steady state, the number of visits per unit time by the expert is given by  

 V0
a
 = N5/D1         (124) 

where  

 N5 = p25[p12(p30+p36) + p36p62(p13+ p14)]                  (125) 

 

Expected Discussion Time 

The following recursive relations for DTi(t) are obtained :−  

DT0(t) = q01(t)©DT1(t) 

DT1(t) = q10(t)©DT0(t) + q12(t)© DT2(t) + q13(t)©DT3(t)  

             + q14(t)©DT4(t) 

DT2(t) = W2(t) + q23(t)©DT3(t) + q24(t)©DT4(t) + q25(t)©DT5(t) 

DT3(t) = q30(t)©DT0(t) + q36(t)©DT6(t) + q33
(7)

(t)© DT3(t) 

DT4(t) = q43(t)© DT3(t) 

DT5(t) = q50(t)© DT0(t) + q53(t)© DT3(t) + q54 (t)© DT4(t)  

   + q56(t)© DT6(t)   

DT6(t) = q61(t)© DT1(t) + q62(t)© DT2(t)            (126-132) 

 

 

 

where  

W2(t) = 
teλ

H1(t)         (133) 

 

Taking L.T. of the above equations and solving them for DT0*(s), In steady state, the total fraction of time for 

which the discussion is going on is given by 

DT0 = N6/D1          (134)
 

where 

N6 = µ2[p12(p30 + p36) + p36p62(p13 + p14)]                    (135) 
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Profit Analysis 

 The expected total profit incurred to the system in steady state is given by  

P = C0A0 − C1B0
e
 − C2B0

a
 − C3V0

e
 − C4V0

a
 − C5 − C6 (DT0)        (136) 

where  

C0 = revenue per unit up time of the system 

C1 = cost per unit time for which the expert repairman is busy 

C2 = cost per unit time for which the assistant repairman is busy 

C3 = cost per visit of the expert repairman 

C4 = cost per visit of the assistant repairman  

C5 = cost per unit time for the regular repairman 

C6 = cost per unit time for which the expert is discussing the nature of   

        failure   

 

NUMERICAL RESULTS AND DISCUSSION 

Let us consider the following particular case for obtaining various findings: 

g(t) = αe
−αt

,  h1(t) = β1 e
−β1t

 ,    ge(t) = α1e
−α1t

 ,   ga(t) = α2
−α2t

  

It has been noticed that: 

The MTSF decreases as failure rate increases.  However, the values of MTSF become higher if we increase the 

discussion rate (β1). On increasing the values of λ, the values of the profit have decreasing trend. Also, the values of 

the profit become lower if we increase the cost for discussion (C6). The MTSF as well as the Profit have the higher 

values for the higher values of probability (p2). 

 

Comparison of the Model with that having No Provision of the Assistant Repairman 

The transition diagram in case when there is no provision of the assistant repairman will take the form as shown in 

Fig. 2. Proceeding in the similar manner as above, the transition probabilities and the expressions for the following 

measures of system effectiveness have been obtained: 

MTSF, Availability analysis, Busy period analysis of the expert repairman, expected number of visits by the 

expert repairman. 

 
Fig. 2 
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The expression for the profit, in steady state, is obtained as    

P1 = C0A0 − C1B0
e
 − C3V0

e
 − C5        (137) 

where C0 , C1, C3 and C5  are same as already defined in Model 1.  

The comparative study done graphically as shown in Fig. 3 revealed that the difference of profits (P1 − P) increases 

as we increase the waiting rate(β) when the regular repairman is taking rest. But this difference has the lower value 

if we increase the value of discussion rate. Further, 

 (i)  If β1 = 6, then P1 − P < 0 or = 0 or > 0 according as β < 1.21 or = 1.21 or > 1.21.  This implies that there 

should be provision or no provision of the assistant repairman according as β < 1.21 or β > 1.21. The two 

models are equally good if β = 1.21.   

(ii) If β1 = 3, then P1 − P < 0 or = 0 or > 0 according as β < 0.12 or = 0.12 or > 0.12.  This implies that there should 

be provision or no provision of the assistant repairman according as β < 0.12 or β > 0.12. The two models are 

equally good if β = 0.12.   

 

 

Fig. 3 
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ABSTRACT : 

In 2010, Kim et al., obtained an interesting extension of the classical Watson summation theorem. The aim of 

this research paper is to establish an interesting summation formula for the H- function by employing extended 

classical Watson's summation formula. 

A few interesting special cases have also been given. 

Keywords : H- function, Watson's Summation  Theorem. 

 

1. INTRODUCTION 

We recall here by beginning the definition of the well-known, interesting and useful H-function introduced by Fox 

[2] and studied in detail by Braaksma[1] will be defined and represented in the following manner: 

            ��,��,� �	 
 ��
�, ����
����, ����

�� = 12�� �����	� �!  
 

(1.1) 

where 

 ���� = ∏ Γ��� − ���� ∏ Γ�1 − 
� + ������%���%�∏ Γ�1 − �� + ���� ∏ Γ�
� − ������%�&���%�&�   

(1.2) 

Also, 

(i) � = √−1 

(ii) 	 ≠ 0 

(iii) An empty product is to be interpreted as unity. 

(iv) m,n,p,q are integers satisfying0 ≤ + ≤ ,, 0 ≤ - ≤ .(not both zero simultaneously) 

(v) 
�, / = 1, … … , .; ��, / = 1, … , ,are complex numbers. 

(vi) ��, / = 1, … . . , .; ��, / = 1 ⋯ , ,are real positive numbers for standardization purposes. 

(vii) L is a contour going from3 − �∞ to 3 + �∞ (3 real) so that all the poles of Γ��� − ����, / = 1, 2, ⋯ +lie to the right of L and all the poles of   Γ�1 − 
� + ����, / = 1 ,2, ⋯ , - lie to the left of L.  

Braaksma[1] has shown that the integral (1.1) converges absolutely if 
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                                                      � > 0, |
67	| < 9:;  ,  

where � is given by  

 � = < ��
�

�%� − < ��
�

�%�&� + < ��
�

�%� + < ��
�

�%�&�  
 

(1.3) 

Also from Braaksma [1]  

                                                ��,��,�=	>~ @=	A> 
For small values of z , where 

                                                                  B = min�F�F� G� H����I 

and 

                                                ��,��,�=	>~ @=	J> 
For large value of z , where  

                                                                 K = max�F�F� G� H
� − 1�� I 

For more detail about H-function, we refer the standard text[4], and a paper by Braaksma [1]. 

 

2.  RESULT REQUIRED 

The following extension of classical  Watson’s summation theorem recently obtained by Kim, et al. [3] will be 

required in our present investigation. 

 NOP Q 
 , �, R,  + 1�;�
 + � + 1�, 2R + 1,   ; 1T 

           =  Γ U12VΓ U12 
 + 12 � + 12VΓ UR + 12VΓ�R − 12 
 − 12 � + 12�
Γ U12 
 + 12VΓ U12 � + 12VΓ UR − 12 
 + 12VΓ�R − 12 � + 12�  

+   W2R −   XΓ U12VΓ U12 
 + 12 � + 12VΓ UR + 12VΓ UR − 12 
 − 12 � + 12V
Γ U12 
V Γ U12 �VΓ UR − 12 
 + 1VΓ UR − 12 � + 1V  

 

 

 

 

 

 

 

(2.1) 

 

provided   G� �2R − 
 − �� > −1 and  ∈ ℂ/ℤ]̂  
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3.  MAIN SUMMATION FORMULA 

In this section, the following interesting summation formula for the H-function will be  

established. 

 < �
�_���_� + 1�_
H12 �
 + � + 1�I_ � �_6!

∞

_%]  ��&;,�&��,�&; a	 b�1 − R − 6, c�, �−R, c�, ��
�, ����
����, ���� , �−2R − 6, 2c� �d  

 

 = �Γ U12 
 + 12 � + 12V
2;eΓ U12 
 + 12VΓ U12 � + 12V ��&;,�&;�,�&; � 	2;f 
�1 − R, c�, U�; − R + �;
 + �;�, cV , ��
�, ����

����, ���� , U�; − R + �;
, cV , U�; − R + �;�, cV�� 
 

 

   

 

 

 

 

 

 + �Γ U12 
 + 12 � + 12V
 2;eΓ U12 
V Γ U12 �V 

 

 

    ×  ��&P,�&P�,�&P � 	2;f 
�1 − R, c�, U�; − R + �;
 + �; �, cV , � − 2R, 2c�, ��
�, ����
����, ���� , U�; 
 − R, cV , U�; � − R, cV , �1 +  − 2R, 2c� �� 

 

(3.1) 

 

 

 

 

 

provided c > 0, Re�c� > 0, klm�F�F�  G� nR + c WopqpXr > 0,  ∈ ℂ/ℤ]̂ ,    � >  0 ,  |
67	| < 9:;    where �  is the 

same as given in (1.3) .  

 

4.  PROOF 

In order to derive the main summation formula (3.1), we proceed as follows. Denoting the left hand side of (3.1) by 

S, expressing the H-function by its definition (1.1), we have  

 

s = < �
�_���_� + 1�_
H12 �
 + � + 1�I_ � �_6! . 12�� � ����	� Γ�R + c� + 6�Γ�R + c� + 1�

Γ�2R + 2c� + 6 + 1�!  �∞

_%]  

Interchanging the order of summation and integration, which is easily seen to be justified due to the uniform 

convergence of the series and absolute convergence of the integral and using the result,  �
�_ = Γ�
 + 6�
Γ�
�  

we have after some simplification 
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s = 12�� � ����	� Γ�R + c��Γ�R + 1 + c��
Γ�2R + 2c� + 1� tuv

uw< �
�_���_� + 1�_�R + c��_
H12 �
 + � + 1�I_ �2R + 2c� + 1�_� �_6!

∞

_%] xuy
uz

!  � 

on summing up the inner series, we have  

 

s = 12�� � ����	� � Γ�R + c��Γ�R + 1 + c��
Γ�2R + 2c� + 1�  . NOP Q 
 , � , R + c�,  + 1�;�
 + � + 1�, 2R + 2c� + 1,   ;  1T!  

Now if we use the extended Watson’s summation theorem (2.1),separating into two parts and writing 2R + 2c� −  = Γ�2R + 2c� −  + 1�
Γ�2R + 2c� −  �  

and using the duplication formula for the Gamma function 

Γ�2z� = 2;|^�
Γ�z�Γ Uz + 12V√π  

and finally interpreting the result thus obtained with the help of definition of H-function using (1.1), we easily 

arrive at the right-hand side of (3.1). This completes the proofof ourinteresting summation formula (3.1). 

 

5.  APPLICATION 

It is interesting to mention here that if for the factor  2R −  + 2c�, we write 2R −  + 2c� = 2R −  + 2c Γ(� + 1)
Γ(�)  

and  proceed on similar lines, we get 

 < (
)_(�)_( + 1)_H12 (
 + � + 1)I_ ( )_6!
∞

_%]  ��&;,�&��,�&; a	 b(1 − R − 6, c), (−R, c), ��
�, ��������, ���� , (−2R − 6, 2c) �d  

 

 = �Γ U12 
 + 12 � + 12V2;eΓ U12 
 + 12VΓ U12 � + 12V ��&;,�&;�,�&; � 	2;f 
(1 − R, c), U�; − R + �;
 + �;�, cV , ��
�, ����
����, ���� , U�; − R + �;
, cV , U�; − R + �;�, cV �� 

 

 

 

 + W2R −   X �Γ U12 
 + 12 � + 12V
Γ U12 
V Γ U12 �V 12;e ��&;,�&;�,�&; � 	2;f 
(−R, c), U�; − R + �;
 + �;�, cV , ��
�, ����

����, ���� , U�;
 − R, cV , U�;� − R, cV �� 

 

 

 

 + 2c 12;e �Γ U12 
 + 12 � + 12V
Γ U12 
VΓ U12 �V ��&P,�&P�,�&P � 	2;f 
(0,1), (−R, c), U�; − R + �;
 + �;�, cV , ��
�, ����

����, ���� , (1,1), U�;
 − R, cV , U�;� − R, cV �� 
 

(5.1) 
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Thus on comparison of (3.1) with (5.1), we get,  after some simplification, the following interesting recursive 

relation for the H-function. 

 ��&P,�&P�,�&P � 	2;f 
 (1 − R, c), U�; − R + �;
 + �;�, cV , ( − 2R, 2c), ��
�, ����
����, ���� , U�;
 − R, cV , U�;� − R, cV , (1 +  − 2R, 2c)�� 

 

 

  =  (2R −  )��&;,�&;�,�&; � 	2;f 
(−R, c), U�; − R + �;
 + �;�, cV , ��
�, ����
����, ���� , U�;
 − R, cV , U�;� − R, cV �� 

 

 

   + 2 c��&P,�&P�,�&P � 	2;f 
(0,1), (−R, c), U�; − R + �;
 + �;�, cV , ��
�, ����
����, ���� , (1,1), U�;
 − R, cV , U�;� − R, cV �� 

 

(5.2) 

 

6.  SPECIAL CASES 

In this section, we shall mention two very interesting special cases of our main summation formula. 

(i) Let � = −2ℓ and replace 
  by 
 + 2ℓ, whereℓ is zero or a positive integer. In such case, one of the two terms 

on the right hand side of (3.1) will vanish and we get the following interesting result 

 < (−2ℓ)_(
 + 2ℓ)_( + 1)_H12 (
 + 1)I_ ( )_6!
∞

_%]  ��,��,� a	 b(1 − R − 6, c), (−R, c), ��
�, ��������, ���� , (−2R − 6, 2c) �d 

 

 

 

 = (−1)ℓΓ U12V U12V
ℓ2;e U12 
 + 12V
ℓ

 ��&;,�&;�,�&; } 	2;ℓ ~ (1 − R, c), W12 + 12 
 − R, cX , ��
�, ����
����, ���� , W12 + 12 
 − R + ℓ+ cX , W12 − R − ℓ, cX�� 

 

(6.1) 

 

(ii) Let � = −2ℓ− 1 and replace a by
 + 2ℓ+ 1, where ℓ is zero or a positive integer. In such case, one of the two 

terms on the right-hand side of (3.1) will vanish and we get the following interesting result  

 < (−2ℓ− 1)_(
 + 2ℓ+ 1)_( + 1)_H12 (
 + 1)I_ ( )_6!
∞

_%]  ��&;,�&��,�&; a	 b(1 − R − 6, c), (−R, c), ��
�, ��������, ���� , (−2R − 6, 2c) �d 

 

 

 

 =  (−1)_^�
Γ U12V U32V

ℓ 2;e&� U12 
 + 12V
ℓ

 
 

 

 × ��&P,�&P�,�&P } 	2;f ~ (1 − R, c), W12 
 + 12 − R, cX , ( − 2R, 2c), ��
�, ����
����, ���� , W12 + 12 
 − R + ℓ, cX , W−ℓ− 12 − R, cX , (1 +  − 2R, c)�� 

 

(6.2) 
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Since H-function is one of the most general function of one variable studied so far which includes as special cases, 

Meijer’s G-function, MacRobert’s E-function, Wright’s generalized hypergeometric function, Generalized 

hypergeometric function 
p qF ,Whittaker function, Mittag-Leffler function and almost all elementary functions, so 

from our generalized summation formulas, a large number of interesting special cases can we obtained. But we 

shall not record them due to the lack of space. 

 

REFRENCES 

1. Braaksma, B.L.J.Asymptotic expansions and analytic continuation for a class of Barnes integrals, comp.Math., 15,239-

341,  (1964). 

2. Fox,C.TheG and H-functionsas symmetrical Fourier Kernels, Trans. Amer. Math.soc., 98, 395-429,(1961).  

3. Kim, Y. S., Rakha, M. A. and Rathie, A.K., Extension of certain classical summations theorems for the series 2 1F , 3 2F  

and 4 3F with applications in Ramanujan’s summations, Int.J.Math.Sci., Article ID 309503, 26 pages, (2010) 

4. Mathai,A.M., Saxena, R.K. and Haubold.H.J,  The H- function: Theory and Applications, Springer, New York (2010). 



-179- 

 

 

 

CHARACTERISTICS OF RIEMANNIAN MANIFOLDS  

AND PSEUDO- RIEMANNIAN METRIC 
 

K.C. Petwal and Kulveer Singh Rana 
Department of mathematics, HNB Garhwal Central University, SRT Campus Badshahi Thaul,  

Tehri Garhwal, Pin- 249 199, Uttarakhand, India 

Email: kcpetwal@gmail.com 
 

ABSTRACT : 

In the present paper we characterize the Riemannian manifolds, pseudo- Riemannian metric and several 

applications of Riemannian manifolds have been investigated. We discuss linear connections, connectors, 

torsion and space of all covariant derivatives on Riemannian manifolds and also geometry of geodesics structure 

of Riemann manifold. In a pseudo-Riemann manifold there is a torsion-free covariant derivative which is 

compatible with the Riemann metric. Further characterize the geodesic distance conformal metrics, sectional 

curvature relations to vector analysis in three dimensions of Riemannian and pseudo-Riemannian manifold and 

several theorems are investigated. 

Keywords: Riemannian, Manifold, curvature, covariant, conformal, connection, tensor, geodesic, sectional, 

metric.  
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1. INTRODUCTION 

Riemannian manifold: In differential geometry, a (smooth) Riemannian manifold or (smooth) Riemannian 

space (M, g) is a real smooth manifold M equipped with an inner product  on the tangent space  at each point that 

varies smoothly from point to point in the sense that if X and Y are vector fields on M, then  is a smooth function. 

The family  of inner products is called a Riemannian metric (tensor). These terms are named after the German 

mathematician Bernhard Riemann. The study of Riemannian manifolds constitutes the subject called Riemannian 

geometry. 

Riemann metrics: Let M be � −dimensional smooth manifold. A Riemann metric g on M is a symmetric �0,2� −tensor field such that 	
: �

 × �

 ⟶ ℝ is a positive definite inner product for each � ∈ 
. A pseudo-

Riemann metric g on M is a symmetric �0,2� −tensor field such that 	
 is non-degenerate, i.e. 	
: �

 ⟶ �
∗
 is 

one-one onto ∀ � ∈ 
 

If ��, �� is a chart on 
, then we have 

�	|� = � 	�
�,���  !!�� , !!��" #��⨂ #�� = : � 	��#��⨂ #��

�,�  

Here %	�����&is a symmetric invertible �� × �� −matrix for each � ∈ 
, positive definite in the case of a Riemann 

metric; thus '	��(: � ⟶ 
)*+,��� × ��. In the case of a pseudo-Riemann metric, the matrix '	��( has p positive 
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eigenvalues and q negative ones; �-, .� is called the signature of the metric and . = / − - is called the index of 

the metric; both are locally constant on 
 and we shall always assume that it is constant on 
. 

Lemma 1.1: On each manifold M there exist many Riemann metrics. But there need not to exist a pseudo-Riemann 

metric of some given signature. 

Proof: Let ��0 , �0� be an atlas on 
 with a subordinated partition of unity �10�. Choose smooth mappings 	��0  from 

�0  to the convex cone of all positive definite symmetric �� × �� − matrices for each 2  and put 	 = ∑ 10 ∑ 	��0 #�0� ⨂#0� .��0   

For example, on any even-dimensional sphere 567 there does not exist a pseudo-Riemann metric 	 of signature �1, 2� − 1�: Otherwise there would exist a line subbundle 9 ⊂ �56  with 	�;, ;� > 0 1=> 0 ≠ ; ∈ 9. But since the 

Euler characteristic @�567� = 2, such a line subbundle of the tangent bundle cannot exist. 

Length and energy of a curve: Let A: B), CD ⟶ 
 be a smooth curve. In the Riemann case the length of the curve A is then given by 

9EF �A� ≔ H 	 %A ′�*�, A ′�*�&I 6J #* = H KA ′�*�KL#*.F
E

F
E  

In both cases the energy of the curve c is given by 

MEF�A� ≔ 12 H %A ′�*�, A ′�*�&F
E #*. 

In the Riemann case we have by the Cauchy-Schwarz inequality 

9EF �A�6 = NH KA ′KL. 1#*F
E O6 ≤ H KA ′KL6 #*. �C − )� = 2�C − )�MEF�A�F

E  

For piecewise smooth curves the length and the energy are defined by taking it for the smooth pieces and then by 

summing up over all the pieces. In the pseudo-Riemann case for the length one has to distinguish different classes 

of curves according to the sign of g(c′(t), c′(t)) (the sign then should be assumed constant) and by taking an 

appropriate sign before taking the root. These leads to the concept of ‘time-like’ curves (with speed less than the 

speed of light) and ‘space-like’ curves (travelling faster than light�. 
The length is invariant under reparameterizations of the curve: 

9EF �A ∘ 1� = H 	 %�A ∘ 1�′�*�, �A ∘ 1�′�*�&I 6⁄ #*F
E = H 	 %1 ′�*�A ′'1�*�(, 1 ′�*�A ′'1�*�(&I 6⁄ #*F

E  

= S 	 %A ′'1�*�(, A ′'1�*�(&I 6⁄ K1 ′�*�K#*FE   = S 	 %A ′�*�, A ′�*�&I 6⁄ #* = 9EF �A�FE  

The energy is not invariant under reparameterizations. 

 

2. COVARIANT DERIVATIVES 

Let �
, 	� be a pseudo-Riemann manifold. A covariant derivative on 
 is a mapping ∇: U�
� × U�
� ⟶ U�
�, 
denoted by �V, W� ⟼ ∇YW, which satisfies the following conditions: 

i). ∇YW is Z∞�[� −linear in V ∈ U�
�, i.e., ∇\]Y]^\_Y_W = 1I∇Y]W + 16∇Y_W. So for a tangent vector V
 ∈ �

 

the mapping ∇Y_: U�
� ⟶ �

 makes sense and we have �∇Ya���� = ∇Y�
�b. 
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ii). ∇YW is ℝ −linear in W ∈ U�
�. 

iii). ∇c�f. Y� = df�X�. Y + f. ∇cY for 1 ∈ Z∞�
� f ∈ C∞(M), the derivation property of ∇Y. 

The covariant derivative h is called symmetric or torsion-free if moreover the following holds: ∇cY − ∇iX = BX, YD. 
      The covariant derivative ∇ is called compatible with the pseudo-Riemann metric if we have: V'	�W, j�( = 	�∇YW, j� + 	�W, ∇Yj� ∀V, W, j ∈ U�
�. 
Theorem 2.1.: On any pseudo-Riemann manifold �
, 	� there exists a unique torsion-free covariant derivative ∇= ∇L which is compatible with the metric g. In a chart ��, �� we have ∇ kklm

!!�� = − �Γ��n !!�n ,n  

where the Γ��n   are the Christoffel symbols. 

This unique covariant derivative is called the Levi-Civita covariant derivative. 

Proof: We write the cyclic permutations of property (V) equipped with the signs +, +, −: 
                           V'	�W, j�( = 	�∇YW, j� + 	�W, ∇Yj�, W'	�j, V�( = 	�∇oj, V� + 	�j, ∇oV� − j'	�V, W�( = −	�∇pV, W� − 	�V, ∇pW� 

We add these three equations and use the torsion-free property (IV) to get                                                     V'	�W, j�( + W'	�j, V�( − j'	�V, W�(                                      = 	�∇YW, j� + 	�W, ∇Yj� + 	�∇oj, V� + 	�j, ∇oV� − 	�∇pV, W� − 	�V, ∇pW� 

                                             = 	�2∇YW − BV, WD, j, � − 	�Bj, VD, W� + 	�BW, jD, V� 

which we rewrite as an implicit defining equation for ∇YW: 2	�∇YW, j� = V'	�W, j�( + W'	�j, V�( − j'	�V, W�( − 	�V, BW, jD� + 	�W, Bj, VD� + 	�j, BV, WD�. 
Thus by  �qrr� uniquely determined bilinear mapping �V, W� ⟼ �∇YW� indeed satisfies�r� − �qr�, which is tedious 

but easy to check. The final assertion of the theorem follows by using �qrr� once more  

2	 N∇ kklm
!!�� , !!�sO = !!�� t	  !!�� , !!�s"u + !!�� t	  !!�s , !!��"u − !!�s t	  !!�� , !!��"u = −2 �Γ��n 	vwn  

Linear connections and connectors: Let 
 be a smooth manifold. A smooth mapping Z: �
 ×x is called a linear 

connection or horizontal lift on 
 if it has the following properties: 

i). ���yx�, yzx� ∘ Z = r#zx×x�
. 

ii). Z�  , V
�: �

 ⟶ �Y{��
�  is linear; this is the first vector bundle structure on �6
. 

iii). Z�V
 ,    �: �

 ⟶ ��yx�|I�V
� is linear; this is the second vector bundle structure on �6
. 

The connection C is called symmetric or torsion-free if moreover the following property holds: i�. ~x ∘ Z = Z ∘ 1w�-: �
 ×x �
 ⟶ �6
, where ~x: �6
 ⟶ �6
 is the canonical flip mapping [1]. 
From the properties ��� − ����� it follows that for a chart ��0 , �0� on M the mapping C is given by 

ii). �6��0� ∘ Z ∘ ����0�|I� ×x ���0�|I'��, ��, ��, ��( = '�, �; �,Γ
0��, ��(, 
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Where the Christoffel symbol Γ
0��, �� ∈ ℝ7 �� = dim�
��  is smooth in � ∈ �0��0� and is bilinear in ��, �� ∈ℝ7 × ℝ7. For the sake of completeness let us also note the transformation rule of the Christoffel symbols which 

follows now directly from the chart change of the second tangent bundle in [1]. The chart change on 
 �0� = �0 ∘ ��|I: ��'�0 ∩ ��( ⟶ �0'�0 ∩ ��( 

induces the following transformation of the Christoffel symbols: 

Γl0��
�0 '#'�0�(����, #'�0�(����( = #'�0�(���Γ
���, �� + #6'�0�(�����, �� 

Since a spray S on a manifold determines symmetric Christoffel symbols and thus a symmetric connection Z. If the 

spray S is induced by a pseudo-Riemann metric 	 on 
, then the Christoffel symbols are the same as the singular 

curves of the energy. The promised geometric description of the Christoffel symbols is (5), which also explains 

their transformation behavior under chart changes: They belong to the vertical part of the second tangent bundle. 

Consider now a linear connection Z: �
 ×x �
 ⟶ �6
. for � ∈ �6
 

we have, � − Z'��yx�. �, yzx���( ∈ q��
� = ��yx�|I�0� 

which is an element of the vertical bundle, since ��yx� %� − Z'��yx�. �, yzx���(& = ��yx�. � − ��yx�. � = 0 

by (1). Thus we may define the connector ~: �6
 ⟶ �
 by ~��� = ;->zx %� − Z'��yx�. �, yzx���(&,  
where the vertical projection ;->zx  was defined in[1]. In coordinates induced by a chart on M we have   ~��, �; ), C� = ;->'�, �; 0, C − Γ��a, y�( = '�, C − Γ
�), ��( 

Obviously the connector K has the following three properties: 

 We have ~ ∘ ;wzx = ->6: �
 ×x �
 ⟶ �
 

where ;wzx�V
, W
� = �!|��V
 , *W
� is the vertical lift introduced in (8.12) [1]. 

A. The mapping ~: ��
 ⟶ �
 is linear for the (first) vector bundle structure on yzx: ��
 ⟶ �
. 

B. The mapping ~: ��
 ⟶ �
 is linear for the (second) vector bundle structure on ��yx�: ��
 ⟶ �
. 

A connector, defined as a mapping satisfying �rV�– �Vr�, is equivalent to a connection, since one can reconstruct it 

(which is most easily checked in a chart) by Z�   , V
� = %���yx�|v�>'~: �Y{��
� ⟶ �

(&|I
 

The connecter K is associated to a symmetric connection if and only if ~ ∘ �x = ~.  
a) Torsion: Let ∇ be a general covariant derivative on a manifold 
. 

Then the torsion is given by �=>�V, W� ≔ ∇YW − ∇oV − BV, WD, V, W ∈ U�
�                 (1) 

It is skew-symmetric and ∁∞�
� − linear in V, W ∈ U�
�  and is thus a 2 − form with values in �
: �=> ∈
Ω

6�
; �
� = Γ�⋀6�∗
⨂�
�,  since we have �=>�1. V, W� = ∇\.YW − ∇o�1. V� − B1. V, WD 
 = 1. ∇YW − W�1�. V − 1. ∇o�V� − 1BV, WD + W�1�. V = 1. �=>�V, W�. 
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Locally on a chart ��, ��we have  ��=>|� = � �=>  !!�� , !!��"�,� ⨂#��⨂#�� 

= � N∇ ����
∂∂u� − ∇ ����

∂∂u� − � ∂∂u� , ∂y∂u��O ⨂#��⨂#��
�,�  

= �'−Γ��n + Γ��n (#��⨂#��⨂ !!�n�,�  

= − ∑ Γ��n #�� ∧ #��⨂ kkl� = −2 ∑ Γ��n #�� ∧ #��⨂ kkl�����,�                  (2) 

We may add an arbitrary form � ∈ Ω6�
; �
�  to a given covariant derivative and we get a new covariant 

derivative with the same spray and geodesic structure, since the summarization of the Christoffel symbols stays the 

same. 

 

3. THE SPACE OF ALL COVARIANT DERIVATIVES 

 If  ∇� and ∇I are two covariant derivatives on a manifold 
, then  ∇YI W − ∇Y� W turns out to be ∁∞�
�-linear in V, W ∈ U�
� and is thus a %12& − *��a=> on M; see [1]. Conversely, one may add an arbitrary %12& − *��a=> field � 

to a given covariant derivative and get a new covariant derivative. Thus the space of all covariant derivatives is an 

affine space with modeling vector space Γ��∗
⨂�∗
⨂�
�. 
 

3.1. The covariant derivative of tensor fields: Let h be covariant derivative on a manifold 
, and let V ∈ U�
�. 

Then the ∇Y can be extended uniquely to an operator ∇Y on the space of all tensor fields on 
 with the following 

properties: 

A. For 1 ∈ ∁∞�
� we have ∇Y1 = V�1� = #1�V�. 

B. ∇Y respects the spaces of %-.& − *��a=> fields. 

C. ∇Y��⨂�� = �∇Y��⨂� + �⨂�∇Y��, a derivation with respect to the tensor product. 

D. ∇Y commutes with any kind of contraction Z  (i.e., any trace): So for � ∈ ΩI�
�  and W ∈ U�
� we 

have ∇Y'��W�( = �∇Y���W� + ��∇YW� 

The correct way to understand this is to use the concepts of (19.9)–(19.12): in [1] 

Recognize the linear connection as induced from a principal connection on the linear frame bundle �9� 7, �
� 

and induce it then to all vector bundles associated to the representations of the structure group �9��, ℝ� in all 

tensor spaces. Contractions are then equivariant mappings and thus intertwine the induced covariant derivatives, 

which is most clearly seen from (19.15): in [1] 

Nevertheless, we discuss here the traditional proof, since it helps in actual computations. For � ∈ ΩI�
� and W ∈ U�
� and the total contraction Z we have ∇Y'��W�( = ∇Y'∁��⨂W�( = Z�∇Y�⨂W + �⨂∇YW� = �∇Y���W� + ��∇YW�, 
                           �∇Y���W� = ∇Y'��W�( − ��∇YW�, 
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which is easily seen (as in (22.10)): [1] to be ∁∞�
� −linear in W . Thus ∇Y� is again a 1 −form. 

For a %-.& − *��a=> -tensor field � we choose V� ∈ U�
� and �� ∈ ΩI�
� and arrive (similarly using again the 

total contraction) at �∇Y��'VI, … , V¢ , �I, … , �£( = V %�'VI, … , V¢ , �I, … , �£(&  
−�'∇YVI, … , V¢ , �I, … , �£( − ⋯ − �'VI, … , ∇YV¢ , �I, … , �£( −�'VI, … , V¢ , ∇Y�I, … , �£( − ⋯ − �'VI, … , V¢ , �I, … , ∇Y�£( 

This expression is again ∁∞�
� −linear in each entry V�  or ��  and defines thus the %-.& − *��a=>  field ∇Y� . 

Obviously ∇Y is a derivation with respect to the tensor product of fields and commutes with all contractions. 

For the sake of completeness we also list the local expression 

∇ kklm #�� =  � N∇ kklm #��O  !!�n" #�n
n = � ¥ !!�� ¦�n − #�� N∇ kklm

!!�nO§ #�n = �Γ�n� #�n
nn  

from which one can easily derive the expression for an arbitrary tensor field: 

 ∇ kklm� = � N∇ kklm�O  !!��] , … , !!��¨ , #��] , … , #��© " #��]  ⨂ ⋯ ⋯ ⨂ !!��¨  

� ¥ !!�� t�  !!��] , … , #��©"u − � N∇ kklm
!!��] , … , #��©O − ⋯ − � N !!��] , … , ∇k,k
#��©O§ #��]⨂ ⋯ ⨂ !!��¨  

= �  !!�� ��],…,�¨
�],…,�© + �n,�_,…,m¨

�],…,�©
Γ�,�]n + ⋯ + ��],…,�¨ª],n�],…,�©

Γ�,�¨n − ��],…,�¨
n,�_,…,�©

Γ�,n�] − ⋯ − ��],…,�¨
�],…,�©ª],n

Γ�,n�© " #��]⨂ ⋯ ⨂ !!��¨  

 

4. GEOMETRY OF GEODESICS STRUCTURE OF RIEMANN MANIFOLD 

On a pseudo-Riemann manifold �
, 	� we have a geodesic structure which is described by the flow of the geodesic 

spray on �
. 

The geodesic with initial value V
 ∈ �

 is denoted by * ⟼ ��-�*. V
�  in terms of the pseudo-Riemann 

exponential mapping exp and ��-
 = ���-|�

. We recall the properties of the geodesics which we will use. 

A. ��-
: �

 ⊃ �
 ⟶ 
 is defined on a maximal ‘radial’ open zero neighborhood �
 in �

. Here radial means 

that for V
 ∈ q
 we also have B0,1D. V
 ⊂ q
. This follows from the flow properties since ��-
 = yx'�¬rI­K�

( . 

B. ��{����-|�

� = I#z{x; *ℎ�a �!|���-
�*. V
� = V
 . 

C. ��- Na.  kk° ��-�*. V�"O = ��-'�* + a�V( . 

D. * ⟼ 	  kk° ��-�*. V�, kk° ��-�*. V�" is constant in *: for A�*� = ��-�*. V� we have  

!°	'A ′, A ′( = 2	'∇k±A′, A ′( = 0. Thus in the Riemann case the length 

² kk° ��-�*. V�²L = ³	  kk° ��-�*. V�, kk° ��-�*. V�" is also constant. 

If for a geodesic A the (by (IV)) constant KA ′�*�KLis 1, we say that A is parameterized by arc-length. 

Lemma 4.1: Let �
, 	�be a Riemann manifold. For � ∈ 
 let ´ > 0 be so small that 
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��-
: µ
�´� ≔ ¶V ∈ �Y
: |V|L < ´¸ ⟶ 
 is a diffeomorphism on its image. Then in ��-
'µ
�´�( the geodesic 

rays starting from � are all orthogonal to the ‘geodesic spheres’ ¶��-
�V�: |V|L = v¸ = ��-
'v. 5��

, 	�( for v < ´. 

On pseudo-Riemann manifolds this result holds too, with the following adaptation: Since the unit spheres in ��Y
, , 	
�are hyperboloids, they are not small and may not lie in the domain of definition of the geodesic 

exponential mapping; the result only holds in this domain. 

Proof: ��-
'v. 5��Y
, 	�( is a submanifold of 
 since ��-
 is a Diffeomorphisms on µ
�´�. Let a ⟼ ;�a� be a 

smooth curve in v5��

, 	� ⊂ �

,  

and let ¹�*, 0� = ��-
'*. ;�0�( Then ¹ is a variation of the geodesic ¹�*, 0� = ��-
'*. ;�0�( =: A�*�. In the energy 

of the geodesic * ⟼ ¹�*, a� the integrand is constant by (4 of 4): 

 M�I'¹�  , a�( = 12 H 	 t !!* ¹�*, a�, !!* ¹�*, a�u #*I
� = 12 	'�!|�¹�*, a�, �!|�¹�*, a�(#*    = 12 v6 

Comparing this with the first variational formula (22.3): [1] i.e., � !!aº� %M�I'¹�   , a�(& = H 0#*I
� − 	'A�0�('A ′�0�, 0( + 	'A�1�( tA ′�1�, � ! !aº 0¹�1, a�u 

We get 0 = 	'A�1�(  A»�1�, � kk+² 0¹�1, a�", where � kk+² 0¹�1, a�an arbitrary tangent vector of ��-
'v5��

, 	�(. 

Corollary 4.1.: Let �
, 	�  be a Riemann manifold, � ∈ 
 , and ´ > 0 be such that ��-
: µ
�´� ≔ ¶V ∈�

: |V|L < ´¼ ⟶ 
 is a diffeomorphism on its image. Let A: B), CD ⟶ ��-
'µ
�´�( ∖ ¾�¼ be a piecewise smooth 

curve, so that A�*� = ��-
'��*�, ;�*�( where 0 < ��*� < ´ and |;�*�|L
 = 1. 

Then for the length we have  9EF �A� ≥ |��C� − ��)�| with equality if and only if � is monotone and ; is constant, 

so that A is a radial geodesic, reparameterized by �. 

On pseudo-Riemann manifolds this result holds only for in the domain of definition of the geodesic exponential 

mapping and only for curves with positive velocity vectors (time-like curves). 

Proof: We may assume that c is smooth by treating each smooth piece of A  separately. Let 2��, *� ≔ ��-
'�. ;�*�(. Then 

           A�*� = 2���*�, *�, ! !* A�*� = !2!� ���*�, *�. �′�*� + !2!* ���*�, *�, 
º!2!�ºL
 = |;�*�|L
 = 1,0 = 	  !2!� , !2!* " , C� 9��/) 4.1. 

Putting this together, we get  KA ′KL6 = 	'A ′, A ′( = 	  !2!� . �′ + !2!* , !2!� . �′ + !2!* " 

K�′K6 º!2!�ºL
6 + º!2!* ºL

6 = K�′K6 + º!2!* ºL
6 ≥ K�′K6 

with equality if and only if  ²k0k° ²L = 0; thus  k0k° = 0 and ;�*�  = constant. So finally: 
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 9EF �A� = H KA ′�*�KL#* ≥ H K�′�*�KF
E #* ≥ ÁH �′�*�#*F

E Á = |��C� − ��)�|F
E  

with equality if and only if � is monotone and ; is constant. 

Corollary 4.2.: Let �
, 	� be a Riemann manifold. Let ´: 
 ⟶ ℝ > 0 be a continuous function such that for qÂ = ¾V
 ∈ �

: |V
| < ´��� ∀ V ∈ 
¼  the mapping �y�. ��-�: �
 ⊇ qÂ ⟶ Ä ⊆ 
 × 
 is a diffeomorphism 

from the open neighborhood qÂ of the zero section in �
 onto an open neighborhood Ä of the diagonal in × 
 . 

Then for each ��, �� ∈ Ä there exists a unique geodesic A in 
 which connects � and � and has minimal length: 

For each piecewise smooth curve ¹  from �  to �  we have 9�¹� ≥ 9�A�  with equality if and only if ¹  is a 

reparameterization of c. 

Proof: The set qÂ ∩ �

 = µ
'´���( satisfies the condition of corollary 4.1. For  V
 = ��-
|I��� = ��yx��-|qÂ�|I��, �� the geodesic * ⟶ A�*� = ��-
�*. V
� leads from �  to � 

Let ¦ > 0 be small. Then A contains a segment which connects the geodesic spheres ��-
'¦. 5��

, 	�( and ��-
 %|V
|L
. 5��

, 	�&. By corollary (4.1) the length of this segment is ≥ |V
|L − ¦ with equality if and only if 

this segment is radial, thus a reparameterization of A. Since this holds for all ¦ > 0, the result follows. 

4.3. The geodesic distance: On a Riemann manifold �
, 	� there is a natural topological metric defined by  #�a*L��, �� ≔ ��1¾9�I �A�: A: B0,1D ⟶ 
 -��A�Æ�a� a/==*ℎ, A�0� = �, A�1� = �¼  
which we call the geodesic distance (since ‘metric’ is heavily used). We either assume that 
 is connected or we 

take the distance of points in different connected components as ∞. 

Lemma 4.4: On a Riemann manifold (M, g) the geodesic distance is a topological metric which generates the 

topology of 
. For ´
 > 0 small enough the open ball �
�´
� = ¾� ∈ 
: #�a*L��, �� < ´
¼ 
has the property that any two points in it can be connected by a geodesic of minimal length. 

Proof: This follows by corollary (4.1) and (4.2). The triangle inequality is easy to check since we admit piecewise 

smooth curves. 

 

5. CONFORMAL METRICS 

 Two Riemann metrics 	I  and 	6  on a manifold 
  are called conformal if there exists a smooth nowhere 

vanishing function 1 with 	6 = 16. 	I. Then 	I and 	6 have the same angles, but not the same lengths. A local 

diffeomorphism Ç: �
I, 	I� ⟶ �
6, 	6� is called conformal if Ç∗	6is conformal to 	I. 

As an example, which also explains the name, we mention that any holomorphic mapping with nonvanishing 

derivative between open domains in ℂ is conformal for the Euclidean inner product. This is clear from the polar 

decomposition Ç′��� = KÇ′���K��EÉL%Ê′�Ë�&
 of the derivative. 

As another, not unrelated, example we note that the stereographic projection [1] is a conformal mapping: 

 �^: '57 ∖ ¾)¼, 	+Ì( ⟶ ¾)¼Í ⟶ �ℝ7, 〈   ,   〉�,      �^��� = � − 〈�, )〉)1 − 〈�, )〉 . 
To see this, take V ∈ �
57 ⊂ �
ℝ7^I, so that 〈V, �〉 = 0. Then we get: 
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                                        #�^���V = �1 − 〈�, )〉��V − 〈V, )〉)� + 〈V, )〉�� − 〈�, )〉)��1 − 〈�, )〉�6  

                                                   = I�I|〈
,E〉�_ '�1 − 〈�, )〉�V + 〈V, )〉� − 〈�, )〉)(, 〈#�^���V, #�^���W〉 
= 1�1 − 〈�, )〉�6 〈V, W〉 = 1�1 − 〈�, )〉�6 '	­Ì(
�V, W� 

Theorem 5.1: Let (M, g) be a connected Riemann manifold. Then, we have: 

(1) There exist complete Riemann metrics on 
 which are conformal to 	 and are equal to 	 on any given compact 

subset of 
. 

(2) There also exist Riemann metrics on 
 such that 
 has finite diameter which are conformal to 	 and are equal 

to 	 on any given compact subset of 
. If 
 is not compact, then a Riemann metric for which M has finite 

diameter is not complete. 

Thus the sets of all complete Riemann metrics and of all Riemann metrics with bounded diameter are both dense in 

the compact ∁∞ −topology on the space of all Riemann metrics. 

Proof: (1). For � ∈ 
 let >��� ≔ a�-¾>: �
�>� = ¾� ∈ 
: #�a*L��, �� ≤ >¼  is compact in M¼.  
If >��� = ∞ for one � , then 	 is a complete metric. Since ��-
  is a diffeomorphism near 0
 , >��� > 0 ∀ �. We 

assume that >��� < ∞ ∀ �. 
Claim: |>��� − >���| ≤ #�a*L��, ��; thus >: 
 ⟶ ℝ is continuous, since: For small ´ > 0 the set �
�>��� − ´� is 

compact, #�a*L��, �� ≤ #�a*L��, �� + #�a*L��, �� implies that �,'>��� − ´ − #�a*L��, ��( ⊆ �
�>��� − ´� is 

compact, and thus >��� ≥ >��� − #�a*L��, �� − ´ and >��� − >��� ≤ #�a*L��, ��. Now interchange � and �. 

By a partition of unity argument we now construct a smooth function 1 ∈ ∁∞�
, ℝ > 0�  with 1��� > IÉ�
� . 

Consider the Riemann metric 	̅ = 16	. 

Claim: �Â
 %IØ& ≔ Ù� ∈ 
: #�a*LÂ��, �� ≤ IØÚ ⊂ �
  I6 >���" ; thus it is compact. 

Suppose � ∉ �
  I6 >���" For any piecewise smooth curve A from � to � we have 

 9L�A� = H KA ′�*�KL#* > >���2 ,I
�  

9LÂ�A� = H 1'A�*�(. KA ′�*�KL#* = 1'A�*��( H KA ′�*�KL#* > 9L�A�>'A�*��( ,I
�  

for some *� ∈ B0,1D, by the mean value theorem of integral calculus. Moreover,  K>'A�*��( − >���K ≤ #�a*L�A�*��, �� ≤ 9L�A� =: 9, >'A�*��( ≤ >��� + 9 9LÂ�A� ≥ ÜÉ�
�^Ü ≥ ÜÝÜ = IÝ  a= � ∉ �Â
 %IØ&  ��*ℎ�>. 
Claim: �
, 	̅� is a complete Riemann manifold. 

Let V ∈ �

 with |V|LÂ = 1. Then ��-LÂ�*. V� is defined for |*| ≤ IÞ < IØ But also ��-LÂ Na. � kk°ß°�±I Þ⁄ ��-LÂ�*. V�O is 

defined for |a| < IØ  which equals ��-LÂ  %± IÞ + 5& V",  and so on. Thus ��-LÂ�*. V� is defined ∀ * ∈ ℝ, and the 

metric 	̅ is complete. 
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Claim: We may choose f in such a way that 1 = 1 on a neighborhood of any given compact set ~ ⊂ 
. 

Let  Z = /)� Ù IÉ�
� : � ∈ ~Ú + 1. By a partition of unity argument we construct a smooth function 1 with 1 = 1 on 

a neighborhood of ~ and Z1��� > IÉ�
�  ∀ �.  By the arguments above, Z616	 is then a complete metric; thus so is 

16	. 

Proof: (2). Let 	 be a complete Riemann metric on 
 . We choose � ∈ 
 , a smooth function ℎ  with ℎ��� >#�a*L��, ��, and we consider the Riemann metric 	á, = �|6â�,�	, . For any � ∈ 
  ∃ a minimal 	 −geodesic A 

from � to �, parameterized by arc-length. Then  ℎ'A�a�( > #�a*L'�, A�a�( = a ∀ a ≤ #�a*L��, �� =: 9 
But 

                            9LÂ�A� = H �|â'ä�+�(KA ′�a�KL#a < H �|+1#aÜ
� < H �|+#a∞

� = 1,Ü
�  

so that 
 has diameter 1 for the Riemann metric 	á. We may also obtain that 	á = 	 on a compact set as above.  

 Proposition: Let �
, 	� be a complete Riemann manifold. Let V ∈ U�
� be a vector field which is bounded with 

respect to 	, |V|L ≤ Z. Then V is a complete vector field; it admits a global flow. 

Proof: The flow of V is given by the differential equation  kk° ¬l°Y��� = V%¬l°Y���&  with initial value  ¬l�Y��� = �. 
suppose that A�*� = ¬l°Y��� is defined on �), C� and that C < ∞, say. Then 

#�a*L NA�C − 1 �⁄ �, A�C − 1 /⁄ � ≤ 9F|I 7⁄F|I �⁄ �A� = H KA ′�*�KL#*F|I �⁄
F|I 7⁄ O 

= H KV'A�*�(KL#* ≤ H ZF|I �⁄
F|I 7⁄ #*F|I �⁄

F|I 7⁄ = Z.  1/ − 1�" ⟶ 0 

so that A�C − 1 �⁄ � is a Cauchy sequence in the complete metrical space 
 and the limit A�C� = lim7⟶∞ A�C −1 �⁄ � exists. But then we may continue the flow beyond C by  ¬l+Y %¬lFY���& = ¬lF^+Y . 
Proposition 5.1: Let X be a complete vector field on a connected manifold 
. Then there exists a complete 

Riemann metric g on the manifold 
 × ℝ such that the vector field V × !° ∈ U�
 × ℝ� is bounded with respect to 	. 

Proof: Since  ¬l°Y×k±��, a� = �¬l°Y���, a + *� the vector field V × !°  is also complete. It is now here 0. 

Choose a smooth proper function 1I on 
; for example, if a smooth function 1I satisfies 1I��� > #�a*LÂ���, �� for a 

complete Riemann metric 	̅ on 
, then 1I is proper.  

For a Riemann metric 	̅  on 
  we consider the Riemann metric 	̅  on the product 
 × ℝ  which equals 	
  on �

 ≅ �

 × 0° = ��
,°��
 × ¾*¼� and satisfies |V × !°|LÂ = 1      )�#   	̅�
,°� %�V × !°���, *�, ��
,°��
 × ¾*¼�& = 0 
We will also use the fiberwise 	̅ −orthogonal projections ->x: ��
 × ℝ� ⟶ �
 × 0   )�# ->Y: ��
 × ℝ� ⟶ ℝ. �V × !°� ≅ ℝ. 
The smooth function 16��, a� = 1I'¬l|+Y ���( + a  satisfies the following and is thus still proper:  'ℒY×k±16(��, a� = �!|�16  ¬l°Y×k±��, a�" = �!|�16�¬l°Y���, a + *� 
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= �!|� %1I  ¬l|+|°Y %¬l°Y���&" + a + *&= �!|�1I'¬l|+Y ���( + 1 = 1 

By a partition of unity argument we construct another smooth function 1Ý: 
 × ℝ ⟶ ℝ which satisfies 1Ý��, a�6 > /)�¶|W�16�|6: W ∈ ��
,+��
 × ¾a¼�, |W|LÂ = 1¸. 
Finally we define a Riemann metric 	 on 
 × ℝ by 	�
,°��W, j� = 1Ý��, *�6	̅�
,°�'->x�W�, ->x�j�( + ->Y�W�. ->Y�j� 
for W, j ∈ ��
,°��
 × ℝ� which satisfies |V × !°|L=1. 

Claim: 	 is a complete Riemann metric on 
 × ℝ. 

Let A be a piecewise smooth curve parameterized by 	 −arc-length. Then KA ′KL = 1, also K->x'A ′(KL ≤ 1, K->Y'A ′(K ≤ 1 !!* 16'A�*�( = #16 %A ′�*�& =  ->x %A ′�*�&" �16� + ->Y %A ′�*�& �16�, 
 º !!* 16'A�*�(º ≤ è ->x %A ′�*�&K->x'A′�*�(KL �16�è + è ->Y %A ′�*�&K->Y'A ′�*�(KL �16�è < 2 

                                                               = é I\ê'ä�°�( £Éë%ä ′�°�&
²£Éë%ä ′�°�&²ìí

�16�é + KℒY×k±16K 
by the definition of 	 and the properties of 1Ý and 1Ý. Thus 

 K16'A�*�( − 16'A�0�(K ≤ H º !!* 16'A�*�(º #* ≤ 2*°
�  

Since this holds for every such A, we conclude that |16��� − 16���| ≤ 2#�a*L��, �� 

and thus each closed and #�a*L −bounded set is contained in some  ¾� ∈ 
 × ℝ: #�a*L��, �� ≤  ¼ ⊂ 16|I  �16��� −  2 , 16��� +  2�" 
which is compact since 16 is proper. So �
 × ℝ, 	� is a complete Riemann manifold.  

Theorem 5.2: Let �
, 	�be a pseudo-Riemann manifold with vanishing curvature. Then 
 is locally isometric to ℝ� with the standard inner product of the same signature: For each � ∈ 
 there exists a chart ��, �� centered at � such that �	|� = �∗〈   ,   〉. 
Proof: Choose an orthonormal basis VI���, … , V����  =1  ��

, 	
�;  this means 	
 %V����, V����& = î��¦��  where 

î = #�)	�1, … ,1, −1, … , −1� is the standard inner product of signature �-, .�. Since the curvature   vanishes, we 

may consider the horizontal foliation of curvature and integrability of horizontal bundle. Let ï�  denote the 

horizontal leaf through V����and define  V�: � ⟶ �
 C�   V� = ��yx|ï��|I: � ⟶ ï� ⊂ �
 where � is a suitable 

(simply connected) neighborhood of �  in 
 . Since V� ∘ A  is horizontal in TM for any curve A  in � , we have ∇YV� = 0 for any V ∈ U�
� for the Levi-Civita covariant derivative of 	. Vector fields V� with this property are 

called Killing fields. Moreover V %	'V�, V�(& = 	'∇YV� , V�( + 	'V� , ∇YV�( = 0  thus  	'V� , V�( = A=�a*)�* =	 %V����, V����& = î��¦��  and V�,…,V� is an orthonormal frame on �. Since h has no torsion, we have 

 



 

AJMI 10(1), Jan-June, 2018  K.C. Petwal and Kulveer Singh Rana 

-190- 

 

0 = �=>'V� , V�( = ∇YmV� − ∇YðV� − ñV�, V�ò = ñV�, V�ò 
Since there exists a chart ��, �� on 
 centered at � such that V� = kklm, i.e., ��. V���� = �����, ��� for the standard 

basis �� of ℝ�. 

Thus �� maps an orthonormal frame on � to an orthonormal frame on ���� ∈ ℝ7 and � is an isometry. 
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ABSTRACT : 

This paper presents the stability of gaits of kneed biped robots in compare to kneeless bipeds while walking on 

the ramp in absence of external forces except gravity. The kneed biped modeled by adding knees in the kneeless 

biped with the same dimensions. Consequently, the ramp angle is considered as a parameter for the comparative 

analysis of stability of models. The fixed-point analysis of Poincare map technique is used for the stability 

analysis of periodic gaits. The bifurcation diagrams are used for pictorial representation of results. The effects 

of ramp angle show that the kneed biped is fast, stable with small step size for higher ramp angle compare to 

kneeless biped. As a result, the knees increased the stability of biped. 

Keywords : passive dynamic walking, periodic orbit, Poincare map, bifurcation diagram 

 

1. INTRODUCTION 

 Biped robotic walking is inspired by walking of living organism like Kangaroo, Ostrich, Pangolins, and 

Humans. All they have their own walking patterns like Kangaroo is famous for hopping gaits, Ostrich for aerial-

running gaits at faster speed, Pangolin for small legs walking, human for purely two legs walking. These gaits 

mechanisms depend on the body and legs structure of the living organism.  

This paper studies the effects of knees on the gait patterns of biped robots. The impacts of knees are examined by 

analyzing the results of kneed and kneeless bipeds. In section 2, the mathematical models of passive dynamic kneed 

and kneeless bipeds are described. The kneeless biped built of two links which behaves as the legs and they joined 

at uppers ends which works as the hip of biped. The gait of kneeless biped is the combined effects of two events: 

the motion of swing leg and heel-strike [1] [2] [3]. In case of kneed biped, four links are usedwhich connected by 

three joints, the center joint acts as ahip while others work as knees of legs of biped.The gait of kneed biped is the 

result of three of events: the motion of swing leg, knee-strike and heel-strike [4] [5].The motion equations of swing 

legs are obtained from the Lagrangian motion equations which are analogous to two and four links inverted 

pendulums [6] [7][8]. The transition equations of knee-strike and heel-strike are developed using conservative laws 

of momentums which are similar to the physical impact models [9] [10] [11].  

The section 3 explains the Poincare maps of the both models. The fixed-point analysis of Poincare map is used for 

the study of stability of gaits of the bipeds which helps to reduce the degrees of freedom of the biped system [12] 

[13]. The cell-to-cell mapping method is used for finding fixed point of Poincare map which gives the accurate 

results but time-consuming method [14] [15]. The section 4 contains the simulation results and its pictorial 

representation through bifurcation diagrams [16].   

 

 

2.  PASSIVE DYNAMICS MODELS 

 In the context of biped robots, defining the kinematics is the first step for developing bipedal walking. The 

kinematics of humanoid modeled the hybrid system that show both continuous and discrete behavior. 
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Consequently, the mathematical models of bipedal walkers are consisting two components; the continuous 

component contains the dynamics of swing phase determined by Lagrangian motion equations and the discrete 

component contains the impact equations for the instantaneous change in the velocity of the system when a knee 

locks or a heel strikes the ground. 

The kneeless biped model [2] and kneed biped model without torso [4] are the two frequently used passive dynamic 

biped models indicated in Figure 1. 

 

Figure 1 Schematic representation of knee-less (a) and kneed (b) biped walkers on the ramp 

 

2.1 Model for knee-less biped robot 

The knee-less biped walker builds by two rigid straight links connected thorough a joint at the hip. It is a three-

point masses system with two degrees of freedom due to two distance constraints. The configuration of the knee-

less walker can be described by the four-dimensional state variable 1 2 1 2

T

q θ θ θ θ =  
& & .  

The continuous component has the motion equation for the swing phase before the swing leg strikes the ground. 

Using Lagrange’s method, the motion equation for passive walking is in the form 

( ) ( ) ( ), 0M N gθ θ θ θ θ θ+ + =&& & &     (I) 

where [ ]1 2

T
θ θ θ=  

( )
( )

( )
( )

( )

( )

( )
( )

2 2 2

1 2 1 2 2

2

1 2 1 2 1

1

2

cos 0 sin
, , ,

cos sin 0

sin

sin

ma Ml ml mlb mlb
M N

mlb mb mlb

ma Ml ml g
G

mgb

θ θ θ θ θ
θ θ θ

θ θ θ θ θ

θ
θ

θ

  + + − − − −
= =   

− − −    

 − − −
=  
 

&
&

&
 

The discrete component of the model has impact equation for the instantaneous change in the velocities of swing 

and stance legs when swing leg strikes the ground and also the equation includes the position change for the 

subsequent step. Using the conservative law of angular momentums, the impact equation is in the form  

         

( )
( )( ) ( )

1

0

0

J
q f q q

H Hϕ ϕ

+ − −

−
+ −

 
 = =
 
 

 

where 1 2 1 2

T

q θ θ θ θ =  
& & ,

0 1

1 0
J

 
=  
 

, 2 1θ θ ϕ− = , ( )
( )

22 cos

0

mab mla Ml mab
H

mab

ϕ
ϕ

−
 − + + −

=  
−  

( )

2 2 2 2

2

cos cos

cos

m mma Ml ml lb mb lb
H

mlb mb

ϕ ϕ
ϕ

ϕ

+
 + + − −

=  
− 

. 
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2.2 Model for kneed biped robot 

The kneed walker builds by four rigid links connected thorough three joints: two attheknees and one at the hip.It is 

a five-point masses system with four degrees of freedomowing to the distance constraints. The configuration of the 

kneed walker can be described by the six-dimensional state variable 1 2 3 1 2 3

T

q θ θ θ θ θ θ =  
& & & . 

The Lagrangian motion equation of swing phase before knee locks for the passive walking of kneed walker is in the 

form 

( ) ( ) ( ), 0M N gθ θ θ θ θ θ+ + =&& & &     (II) 

where [ ]1 2 3

T
θ θ θ θ=  

( )

( )

( )

( )( ) ( ) ( )

( )( )

( )
( ) ( ) ( )

( ) ( ) ( )

22
1 1 1 2

2 2 2 1 2 1 1 3
2

2 2 2 22
2 2 2 1 2 2 2 3

1 2

2
1 1 3 1 2 2 2 3 1

cos cos

cos
cos

cos cos

s t

t s s

H t s

t s

t s s

s s s

m a m a b a
m b m a b L m b L

m m m L

m b m a b
M m b m a b m b a b

L

m Lb m b a b m b

θ θ θ θ

θ θ θ

θ θ

θ θ θ θ

  
+ + + +

   − + + − − −
  + +  
  − + +  = + + + −
  −  
 

− − + −
 
 
  

’ 

( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 1 2 2 1 1 3 3

2 2 2 1 2 1 1 2 2 2 3 3

1 1 3 1 1 2 2 2 3 2

0 sin sin

, sin 0 sin

sin sin 0

t s s

t s s

s s

m b m a b L m b L

N m b m a b L m b a b

m b L m b a b

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

 − + + − − −

 
 = + + − + −

 
− − + − 

 

& &

& & &

& &

 

( )

( ) ( ) ( )

( ) ( )

( )

1 1 1 2 1

2 2 2 2

1 3

sin

sin

sin

s t H t s

t s

s

m a m a b a m m m L g

g m b m a b g

m gb

θ

θ θ

θ

  − + + + + + +  
  = + + +  
 +
 

. 

At the time of knee-strike, 
1 1 2 2 3,θ θ θ θ θ
+ − + − −

= = = and the impact equation when knee locks is in the form 

           

( )
( )

1

0

0

Q
q g q q

K K

+ − −

−
+ −

 
 = =
 
 

 

where 1 2 1 2 1 2 3 1 2 3

1 0 0
, ,Q

0 1 0

T T

q qθ θ θ θ θ θ θ θ θ θ
+ −

 
   = = =     

 

& & & & &  
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After the knee locks, the system has only two degrees of freedom owing to thigh and shin move forward together 

which behave like knee-less biped and themotion equation is in the form  
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( ) ( ) ( ), 0M N gθ θ θ θ θ θ+ + =&& & &     (III) 

where 
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. 

The impact equation at the time of heel strikes is in the form 

( )
( )( ) ( )
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 
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For the subsequent step, the initial state vector can be considered as 

( ) 1 2 2 1 2 2

T

q E q θ θ θ θ θ θ
+  = =  

& & & . 

3.  POINCARE MAP 

 In biped robots, the core issues of analysis are uniform gait patterns and its stability. The uniform gait patterns 

and its stability are associated to periodic orbit and its stability respectively. The Poincare map is the standard 

technique to study the stability of periodic orbits. The Poincare map defined from Poincare section to Poincare 

section which can be considered as the space of Heel-strike. The Poincare section can be defined as: 

forknee-less biped: { }
4

1 2 1 2 1 2 2
T

S q Rθ θ θ θ θ θ α = = ∈ − = − 
& & and 

for kneed biped: { }
6

1 2 3 1 2 3 1 2 2 32 ,
T

S q Rθ θ θ θ θ θ θ θ α θ θ = = ∈ − = − = 
& & &   

The Poincare map :P S S→ defined by 

forknee-less biped: ( ) ( )( )1 ,
i i i i

q P q f c qτ
+

= =     ( )0i ≥    

where c(t, qi) is the solution curve of the motion equation (I) with respect the initial condition qiand τi is the time of 

heel-strike for the i
th
 step.  
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for kneed biped: ( ) ( )( )( )( )( )2 11 2 1, ,
i i i i i

q P q E f c g c qτ τ
+

= =   ( )0i ≥  

where c1(t, qi) and ( )( )( )12 1
, ,

i i
c t g c qτ are the solution curves of the motion equation (II) and (III) with respect the 

initial conditions qi and ( )( )
11
,

i i
g c qτ respectively and 

1i
τ  and 

2i
τ are the times of knee-strike and heel-strike for 

the i
th
 step respectively. The k-periodic orbit O is locally stable if and only if the k-fixed point q* ( ( )i k i

P q q
+

= for 

the smallest positive integer k) of Poincare map P is locally stable. In this paper, we used the cell-to-cell mapping 

method to obtain the fixed point of Poincare map [14] [15] [16]. 

 

4. COMPARISON OF EFFECTS OF ANGLE OF SLOPE ON KNEELESS AND KNEED ROBOT 

 The focus of this study is to examine the effects on stability of passive dynamic biped after adding knees in the 

kneeless biped model. The analysis performed by considering the ramp angle as a parameter of the models. The 

bifurcation diagrams are used for the comparative study of stability. We observed that the one periodic gaits turn2
n
 

periodic when slope angle is increased and further it directed to chaos for both the models. The bifurcation 

diagrams of the step lengths, impact time and walking speed of kneeless and kneed biped are showed in Figure 2 by 

dotted and non-dotted curved lines respectively. The kneeless biped has longer but slower steps while kneed biped 

is speedy with small steps. 

 

 
(C) 

Figure 2 Bifurcation diagrams (a) step length (b) impact time (c) walking speed as the function of ramp angle 

(----kneeless and -kneed biped) 



 

AJMI 10(1), Jan-June, 2018  Mahesh A. Yeolekar 

-196- 

 

The bifurcation diagrams of angular velocities of stance and swing legs, kinetic and potential energies of bipeds are 

displayed in Figure 3. After 1.29 degree ramp angle, the angular velocity of swing leg of kneed biped is increased 

faster than kneeless biped when the curve of angular velocity of swing leg of kneed biped crossed the curve of 

kneeless biped. The kneeless biped has low potential energy but the high rate of conversion of kinetic energy as the 

ramp angle increased which made it unstable earlier while the kneed biped has high potential energy and the low 

rate of conversion of kinetic energy compare to kneeless made it stable for higher ramp angle. 

 

 

 

 

 

Figure 3 Bifurcation diagrams: (a) angular velocity of stance leg (b) angular velocity of swing leg as the 

function of ramp angle(----kneeless and -kneed biped) 

 

The phase diagrams display the orbits of gaits of kneeless and kneed biped at the ramp angle 2.5 degree in the 

Figure 4. The horizontal distance represents step size while the vertical shows the angular velocities of the legs in 

phase space diagrams. It results that the kneed biped has small step size and high angular velocities compare to 

kneeless biped. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.



 

Comparative Study of Effects of Ramp Angle on The Non-linear Passive Dynamic Walking of Kneed and Knee-less Biped Robot  

-197- 

 

Figure 4 Phase space diagrams:----kneeless and -kneed biped (αααα=2 deg) 

 

Table 1 displayed behavior of periodic gaits of both the models. The kneeless biped has 2 periodic gaits after 4.8 

degree while the kneed biped received it after 6.3 degree ramp angle. The 4 and 8-periodic gaits are not available 

for kneeless biped but the kneed biped gained it in the interval (7.2, 7.3]and (7.3, 7.4] respectively.The chaotic gaits 

are shown after 5.52 and 7.4 degree for kneeless and kneed bipeds respectively. This analysis showed that the 

kneed biped is more stable compare to kneeless robot. 

 

n-periodic Knee-less Robot Kneed Robot 

1-periodic 0.3<α≤4.8 0.3<α≤6.3 

2-periodic 4.8<α≤5.52 6.3<α≤7.2 

4-periodic Not available 7.2<α≤7.3 

8-periodic Not available 7.3<α≤7.4 

Chaotic α>5.52 α>7.4 

 

Table 1 Effects of ramp angle on the periodicity of orbit of kneeless and kneed biped 

 

5. CONCLUSION AND FUTURE SCOPE 

This paper is the comparative study of passive dynamic models of kneeless and kneed biped. The ramp angle is 

considered as a parameter of the relative analysis. From the results of bifurcation diagrams of the ramp angle 

concluded that the kneed biped is fast with the small steps compare to the kneeless biped. The passive model of 

kneed biped is walked more stably for higher ramp angle than the kneeless biped. This analysis showed that the 

biped becomes more stable by adding knees in the kneeless passive dynamic model. These results can be used in 

making of controlled biped and prosthesis legs. 
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ABSTRACT : 

Generally, Human population dynamics is a track factors related to changes in population such as fertility rate 

and life expectancy. Ancient India in 300 BC may have a population in the range 100–140 million. It has been 

estimated that the population was about 100 million in 1600 and remained nearly static until the late 19th 

century. It reached 255 million according to the first census taken in 1881. Studies of India's population since 

1881 have focused on such topics as total population, birth and death rates, growth rates, the rural and urban 

divide, cities of a million, and the three cities with populations over eight million: Delhi,  Greater Mumbai, and 

Kolkata. Mortality rates fell in the period 1920–45, primarily due to biological. India occupies 2.4% of the 

world's land area but supports over 17.5% of the world's population. In the present paper we have study to 

mathematical model of population growth in India by using Logistic model. Population of India has been used 

ordinary differential equation model known as logistic population model which is parameterized by growth rate 

along with capacity human population of India. First we test the numerical method for India population data 

(1981-2013) and we find our population which is very good fit with the population data.  

Keywords: Growth rate, Logistic Population Model, vital coefficient, testing of hypothesis etc. 

AMS Mathematics Subject Classifications (2010): 35G30, 35G60. 

 

1.  INTRODUCTION 

 In section one, introductory part of human population related problems through some mathematical model. In 

the section two, we discuss in necessary details of a model for population growth, the logistic model, which is more 

sophisticated than exponential growth. The logistic model, a slight modification of Malthus's model, is just such a 

model. In section three, we have to study Analytical solution of logistic population model with accelerated growth. 

In section four, calculation of vital coefficients, we have the analytical solution of the logistic equation. In section 

five, we have to introduce the Logistic Model in exponential Population growth governed by differential equations. 

Again, in section six, the solution of the Logistic Model in exponential Population growth to a maintain carrying 

capacity. There are many examples in nature that show that when the environment is stable the maximum number 

of individuals in a population fluctuates near the carrying capacity of the environment. In section seven, we have to 

use the population in India by the general calculation as a basic population growth depends on Censes. In section 

eight, we have emphasized the population dynamics includes birth rates, death rates, immigration, and emigration 

age and sex composition. In section nine, we have show that through graph fertility and mortality trends and 

Demographic indicators in India. Again, in the end, we have discussed the population problems and showed that 
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family planning programs have benefited the whole country drastically and even avoided some terrible social or 

environmental disasters. 

 Population problem is one of the main problems in India at the current time India is an overpopulated country 

and the growth in resources has not been keeping pace with the growth in population. So the increasing trend in 

population is a great threat to the nation. Recognizing the difficulty of feeding the growing population even with 

considerable increase in food production, they suggested giving priority to population policy for reduction in 

population. 

In this situation, prediction of population is very essential for planning. But he agreed that there was a difficulty in 

his model in interpreting its parameter unlike those of exponential as 

(1.1) 
tkr

t epp
)(

0

+
=  

Where 0p = current population, 

            tp = population after time t , 

            r = growth rate, 

           k = annual migration rate, for prediction of regional population. 

In many case, for small population one may use the discrete model as: 

(1.2) 
t

t rpp )1(0 += ,    

Where 0p = current population, 

tp = population after time t , 

r = growth rate. 

We see that this discrete model with the modification of the growth rate which is not constant. where the critical 

point obtained at t = 2021, it means that at t = 2021, p′(t)=0 i.e. the growth rate become zero in the year 2021. We 

analysis after 2021 population decreases in the parabolic manner of mathematical model. 

The continuous analogue of (1.1) is the Malthusian ODE model 

(1.3) ap
dt

dp
= , 

(1.4) 
at

eptp 0)( =   , where a is a constant. 

The Malthusian model is very simple and applicable for small population and therefore for large population it is 

preferable to use logistic ODE population model: 

(1.5) 
2bpap

dt

dp
−= , where a and b are called vital coefficients. 

If 0p  is the population at time 0t , then p(t) , the population at time t , satisfies the initial-value problem (IVP): 

(1.6) 
2bpap

dt

dp
−=

 ,   
00 )( ptp =

 
 

It is easier to calculate the analytical solution for IVP (1.6) when the vital coefficients a and b are considered 

constants. But it is not so easy to calculate the analytical solution for a(t) and b(t) as functions of t. To compute the 

vital coefficients a(t) and b(t) as functions of t, it could be more convenient to use numerical methods based on 

some efficient algorithm. Therefore we are interested to study some well-understood numerical schemes to solve 

the logistic model where we could also calculate the vital coefficients a(t) and b(t) as functions of t based on some 

algorithm. 
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In the population of India based on a non-linear, non-autonomous ordinary differential equation model which is 

known as generalized Logistic Population Model and parameterized by growth rate along with capacity. In terms of 

carrying capacity Logistic Differential equation can also be defined as: 

(1.7) )(1
1

tR
k

p
a

dt

dp

p
=








−=  

Where (1.7) represents the growth rate and k presents carrying capacity. Here the calculations are based on 

parameters characterizing growth rate and carrying capacity. 

 

2.  THE LOGISTIC POPULATION MODEL 

 When the population gets extremely large though, Malthus’s model cannot be very accurate, since they do not 

reflect the fact that individual members are now competing with each other for the limited living space, natural 

resources food available. Thus, we must add a competition term to our linear differential equation. A suitable 

choice of a competition term is ,2bp−  where b is a constant, since the statistical average of the number of 

encounters of two members per unit time is proportional to
2p  . We consider, therefore the modified equation. 

(2.1)   
2bpap

dt

dp
−=

 

This equation is known as the logistic law of population growth and the numbers a, b are called the vital 

coefficients of the population. Now, the constant b, in general, will be very small compared to a, so that if p is not 

too large then the term − bp2 will be negligible compared to a p and the population will grow exponentially. 

However, when p is very large, the term − bp2 is no longer negligible, and thus serves to slow down the rapid rate 

of increase of the population. Needless to say, the more industrialized a nation is, the more living space it has, and 

the more food it has, the smaller the coefficient b is. Let us now use the logistic equation to predict the future 

growth of an isolated population. If p is the population at time t , then p(t) , the population at time t , satisfies the 

initial-value problem. 

(2.2)  
2bpap

dt

dp
−=

 ,   
00 )( ptp =

  

 

3.  ANALYTICAL SOLUTION OF LOGISTIC POPULATION MODEL 

The logistic equation can be solved by separation of variables. From equation (2.2), we have  

(3.1)  
2bpap

dt

dp
−=

   

Integrating on both sides of this equation then we get 

(3.2)  ∫ ∫=

−

dt
bpap

dp
2

 

(3.3)    ctbpap
a

+=−− )]log([log
1

 

Using 0tt =  and 0pp =  tbpap
a

c −−−=∴ )]log([log
1

00  

Now substituting the value of c into equation (3.3) and simplifying, we have 
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(3.4)  
)(

00

0

0)(
)(

tta
ebpabp

ap
tp

−−

−+

=  

This is the required analytical solution of the logistic equation. 

Let us now examine Equation (2.5) to see what kind of population it predicts. We observe that as ∞→t  then 

b

a

bp

ap
tp =→

0

0)(  Thus regardless of its initial value, the population always approaches the limiting value
b

a
. Next, 

we observed that p(t) is monotonically increasing function of the time if bap << 00 . 

Moreover, since 

(3.5)         )()2()2(2
2

2

bpapbpa
dt

dp
bpa

dt

dp
bp

dt

dp
a

dt

pd
−−=−=−=  

We see that dtdp  is increasing if batp <)( , and that dtdp  is decreasing if batp 2)( < . Hence if bap 20 < , 

the graph of )(tp must have the form given in the figure. Such a curve is called a logistic or S–shaped curve. From 

its shape we conclude that the time period before the population reaches the half its limiting value is a period of 

accelerated growth.  

 

4.  CALCULATION OF VITAL COEFFICIENTS 

 We have the analytical solution of the logistic equation as: 

(4.1)   
)(

00

0

0)(
)(

tta
ebpabp

ap
tp

−−

−+

=

      
  Let 0p = current population, tp = population after time 0tt = , and let ttt ∆=− 0 , In this case, calculation of 

the values of a and b is performed in order to predict the population of India. 

In this case, calculation of the values of a and b is performed in order to predict the population of India.  

Growth rate of population k
p

p

n
×







−= 1

1

0

1
 

 For this we assume =0p  population of India in 1991= 891 910000, 

                              
=1p  Population of India in 1996 = 982 553000, 

                              =2p
  

Population of India in 2009= 1 207 740000. 

And natural Growth rate of population k
p

DB







 −
=  

 Where                    B = total registered birth in a year, 

                                D = total registered death in a year, 

                                p = total mid-year population, and 

                               k = constant 1000 or 100. 

For examples, the population of India in1981 and 1982 was 716.289 million and 733.152 million then, percent 

relative to change per year = 25075.2310001
493.716

152.733

1

1
=×








− , but this change is not uniform and so simple as 

it as it seems to be. The person was a child will become father or mother, through change in population being 
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uniform in population may produce unequal growth in different years, which may go increasing. Thus, population 

change behaves is calculated a 







=+

0

1log
1

)1log(
p

p

n
r  substituting the above figure, we get 

   572927984522263711371510009982071.0)02325075.1log(
1

493.716

152.733
log

)1log( ==










=+ r
  

After taking anti-log 

  (1 )r+ = 2.83 

          (2.83 1) 1.83r = − = per year 

 

Thus, growth rate is 1.83 % per year in future population may be possible. 

(Population in millions) 

Year Average 

Population 
Birth Death 

Natural 

change 

B.R. 

(/1000) 

D.R. 

(/ 1000) 

N.C. 

(/1000) 

G.R. 

(/1000) 

N.G.R. 

(/1000) 

1981 716.493 24.289 8.956 15.333 33.9 12.5 21.4 - 21.41 

1982 733.152 24.781 8.725 16.056 33.8 11.9 21.9 23.25 21.89 

1983 750.034 25.276 8.925 16.351 33.7 11.9 21.8 23.02 21.80 

1984 767.147 26.006 9.666 16.340 33.9 12.6 21.3 22.81 21.29 

1985 784.491 25.810 9.257 16.553 32.9 11.8 21.1 22.60 21.10 

1986 802.052 26 .147 8.903 17.244 32.6 11.1 21.5 22.38 21.49 

1987 819.800 26.316 8.936 17.380 32.1 10.9 21.2 22.12 21.20 

1988 837.700 26.388 9.215 17.173 31.5 11.0 20.5 21.83 20.50 

1989 855.707 26.185 8.814 17.371 30.6 10.3 20.3 21.49 20.30 

1990 873.785 26.388 8.476 17.912 30.2 9.7 20.5 21.12 20.49 

1991 891.910 26.133 8.741 17.392 29.3 9.8 19.5 20.74 19.49 

1992 910.065 26.392 9.192 17.200 29.0 10.1 18.9 21.39 18.89 

1993 928.226 26.640 8.633 18.007 28.7 9.3 19.4 19.95 19.39 

1994 946.373 27.161 8.801 18.360 28.7 9.3 19.4 19.55 19.40 

1995 964.486 27.295 8.680 18.615 28.3 9.0 19.3 19.13 19.30 

1996 982.553 26.824 8.745 18.079 27.3 8.9 18.4 18.73 18.40 

1997 1000.558 27 .215 8.905 18.310 27.2 8.9 18.3 18.32 18.29 

1998 1018.471 26.989 9.166 17.823 26.5 9.0 17.5 17.90 17.49 

1999 1036.259 26.943 9.015 17.928 26.0 8.7 17.3 17.46 17.30 

2000 1053.898 27.191 8.958 18.233 25.8 8.5 17.3 17.02 17.30 

2001 1071.374 27.213 9.000 18.213 25.4 8.4 17.0 16.58 16.99 

2002 1088.694 27.217 8.818 18.399 25.0 8.1 16.9 16,16 16.90 

2003 1105.886 27.426 8.847 18.579 24.8 8.0 16.8 15.79 16.80 

2004 1122.991 27.064 8.422 18.642 24.1 7.5 16.6 15.46 16.60 

2005 1140.043 27.133 8.664 18.469 23.8 7.6 16.2 15.18 16.20 

2006 1157.039 27.190 8.678 18.512 23.5 7.5 16.0 14.90 15.99 

2007 1173.972 27.119 8.687 18.432 23.1 7.4 15.7 14.63 15.70 

2008 1190.864 27.152 8.812 18.340 22.8 7.4 15.4 14.38 15.40 

2009 1207.740 27.174 8.817 18.357 22.5 7.3 15.2 14.17 15.19 

2010 1224.614 27.064 8.817 18.247 22.1 7.2 14.9 13.97 14.90 

2011 1242.738 27.092 8.823 18.268 21.8 7.1 14.7 14.79 14.69 

2012 1261.006 27.237 8.827 18.410 21.6 7.0 14.6 14.69 14.59 

2013 1279.416 27.3795 8.956 18.4236 21.4 7.0 14.4 14.59 14.20 

Sources: United Nations Statistics Division website, Demographic Yearbooks, Census of India website, Report of 

Vital Statistics Sample Registration System in India and calculate some rows and columns by above formulas. 
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5.   LOGISTIC MODEL IN EXPONENTIAL POPULATION GROWTH 

 Malthus’s model is unconstrained growth, i.e. model in which the population increases in size without bound. It 

is an exponential growth model governed by a differential equation of the form  

(5.1)       a
dt

dp

p
ap

dt

dp
=⇒=

1
 (Constant)           

 The equation is exponential growth model 

(5.2)       
atatat

ceeepp ==
−

)( 0

0  

Where 0

0

at
epc

−

= is a constant for the constant a . Therefore, the population number p  increases to infinity as 

time t goes to infinity. 

In 1840 a Belgian Mathematician Verhulst modified Malthus’s Model to proposed a new model which is, 

(5.3)       







−=

m

p
ap

dt

dp
1      

Where 0>a expresses population growth rate, and 0>m is called the carrying capacity or the maximum 

supportable population. This equation is also known as a logistic difference equation.  

 

6.  THE SOLUTION OF THE LOGISTIC MODEL IN EXPONENTIAL POPULATION GROWTH 

 We may account for the growth rate declining to 0 by including in the exponential model a factor of a  and p  

which is close to 1 (i.e., has no effect) when p  is much smaller than a , and which is close to 0 when p  is close to 

a .  

The constant solutions are 0=p  and mp = , the non-constant solutions may obtained by separating the variables. 

(6.1)           adt

m

p
dp

dp
=









−1

                            

Taking indefinite integration for the two sides of equation (6.1) 

(6.2)             ∫∫ =









−

adt

m

p
p

dp

1

           

The partial fraction techniques give 

(6.3)             ∫ ∫


















−

+=









−

dp

m

p
m

p

m

p
p

dp

1

1

1

1

                  

This gives 

(6.4)               cat
m

p
p +=−− 1lnln                             

Easy algebraic manipulations give 

(6.5)                
at

ce

m

p

p
=









−1

                                 

Where c is constant and solving for p , we get 
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(6.6)                
at

at

cem

mce
P

+

=                               

If we consider the initial condition 0)0( pp = (assuming that 0p  is not equal to both 0 or m), we get 

(6.7)                
0

0

pm

mp
c

−

=                                 

Which, once substituted into the expression for )(tp and simplified, we find                           

 (6.8)          
at

epmp

mp
tp

−

−+

=

)(
)(

00

0
                           

It is easy to see that 

(6.9)   mtp
t

=
+∞→

)(lim                                      

As you can see, when the population starts to grow, it does go through an exponential growth phase, but as it gets 

closer to the carrying capacity, the growth slows down and it reaches a stable level. This slow down to a carrying 

capacity is perhaps the result of war, pestilence, and starvation as more and more people contend for the resources 

that are now at their upper bound. There are many examples in nature that show that when the environment is stable 

the maximum number of individuals in a population fluctuates near the carrying capacity of the environment. 

However, if the environment becomes unstable, the population size can have dramatic changes. 

 

7.  HUMAN POPULATION DYNAMICS AND GROWTH IN INDIA  

As the general solution and we use this to population of India from 1901 to 2021. Basic population growth trend is 

based on decadal Censuses of India as given below: 

 

Population in India (in 10million) 

Year Population Male Female % Population Growth 

1901 23.8 12.1 11.7 - 

1911 25.2 12.8 12.4 5.7 

1921 25.1 12.9 12.3 -0.3 

1931 27.9 14.3 13.6 11.0 

1941 31.9 16.4 15.5 14.2 

1951 36.1 18.6 17.6 13.3 

1961 43.9 22.6 21.3 21.5 

1971 54.8 28.4 26.4 24.8 

1981 68.3 35.3 33.0 24.7 

1991 84.6 43.9 40.7 23.9 

2001 102.9 53.2 49.7 21.5 

2011 102.1 62.3 58.8 17.7 

2021 133.9 69.4 64.5 23.7 
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8.  THE COMPOSITION OF POPULATION  

The population dynamics includes birth rates, death rates, immigration, and emigration age and sex composition. 

Birth and death rates, immigration and emigration are the four primary ecological events that influence the size of a 

population. This relationship can be expressed in a simple equation:  

8.1 Change in population = (Birth + Immigration) - (Death + Emigration) 

Birth and death rates are the most important determinants of population growth; in some countries net migration is 

also important. Until the mid-19
th 

century birth rates were slightly higher than death rates, so the human population 

grew very slowly. Demographic profiles of the Indian states vary from region to region and state to state. Thus, 

heterogeneity in demographic profiles of the Indian states affects its population composition. Heterogeneity in 

demographic profiles of the six southern states (Andhra Pradesh, Karnataka, Kerala, Tamil Nadu, Maharashtra and 

Goa) and eight empowered action group (EAG) states (viz. Rajasthan, Uttar Pradesh, Uttarakhand, Bihar, 

Jharkhand, Madhya Pradesh, Chhattisgarh and Orissa) are very significant.  
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9.  FERTILITY AND MORTALITY TRENDS AND DEMOGRAPHIC INDICATORS IN INDIA 

Fertility and mortality trend, infant mortality and natural growth rate of India since 1995 to 2013, based on SRS 

data is given in following graph. 

 

 

10. DISCUSSION:  

In this study a mathematical analysis of the population growth in India is carried out based on an ordinary 

differential equation model which is called logistic model. Then we establish a non-linear model that gives 

population for India at the time from 1901 to 2021. To make the non-linear model we use the least square 

interpolation of growth rate. We examine logistic model, using mathematical techniques of differentiation and 

integration, we exactly reach the explicit solutions for logistic model. Experiences of a considerable number of 

countries, especially those, which are less developed, can be speak that over population will but lead to severe 

problems such as slowing development of economy, instability or even collapse of social systems, vicious circle of 

poverty and environmental degradation and pollution. Our study, though very limited and sallow, showed that 

family planning programs have benefited the whole country drastically and even avoided some terrible social or 

environmental disasters. The success of family planning programs in India to make rigid policies by the 

Government, then to deserves attention from other developing countries that also face the problem of massive 

population and its rapid growth and the negative impacts have already affected the whole world. So I suggest a 

global population program should be planned and launched as an important part of sustainable development which 

emphasis an ideal relationship among population growth, economic development and environmental protection.  
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ABSTRACT : 

In this paper, we proved some common fixed point theorems for two pairs of occasionally weakly compatible 

(owc) mappings satisfying implicit relations in modular metric space. The study is an extension and 

generalization to the common fixed point theorems for occasionally weakly compatible mappings satisfying 

implicit relation in modular metric spaces. 
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1.  INTRODUCTION.  

 Chistyakov [6, 8] introduced the concept of modular metric spaces. Recently, many authors [7, 12, 13, 17] 

proved fixed point theorems in modular metric spaces. Jungck [11] generalized the Banach contraction principle by 

using the notion of commuting mappings. Sessa [18] defined weak commutativity and prove fixed point theorem 

for weakly commuting maps. Jungck [10] introduced less restrictive concept from weak commutativity which 

termed as compatibility and discussed few common fixed point theorems in complete metric space. The concept of 

property E.A. in metric space has been introduced by Aamri et. al. [1]. Al-Thagafi and Shahzad [4] introduced the 

concept of occasionally weakly compatible (owc) mappings. Abdou & khamsi [2] proved fixed point results for 

point wise contraction mappings in modular metric spaces. Alfuraidan [3] gave a generalization of the Banach 

contraction principle on a modular metric space endowed with a graph. Recently, Pathak et al. [16] proved the 

result of fixed point theorems for contraction type mappings in modular metric spaces. 

Pariya et. al. [15] proved the result of some unique common fixed point theorems for generalized contraction type 

mappings for six self owc mappings in modular metric spaces. In this paper, we proved common fixed point 

theorems for occasionally weakly compatible mappings satisfying implicit relation using property E.A. and 

common property E.A. in modular metric spaces.  

 

2.  METHODS, MATERIALS, BASIC DEFINITIONS AND PRELIMINARIES : 

Let X be a non-empty set, � ∈ �0,∞� and due to the disparity of the arguments, function � ∶ �0,∞� ×  � ×  � →
[0,∞] will be written as ����, �� = ���, �, �� for all � > 0 and  �, � � �. 
Definition 2.1. Let X be a non-empty set. A function � ∶ �0,∞� ×  � ×  � → [0,∞] is said to be a metric modular 

on X if it satisfies the following three axioms: 

(i) given  �, � � �, ����, �� = 0 ��� ��� � > 0 �� ��� ���� �� � = �;    
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(ii) ����, �� =  ����, �� ��� ��� � > 0 and  �, � � �; 

(iii) ��"#��, �� ≤ ����, %� + �#�%, �� ��� ��� �, ' > 0  and  �, �, % � �.  

If instead of (i), we have only the condition 

 (i’) ����, �� = 0 ��� ��� � > 0 and  � � �, then � is said to be a (metric) pseudo modular on X  and if � satisfies 

(i’) and (is) given x, y � X, if there exists a number � > 0, possibly depending on x and y, such that ����, �� = 0, 

then x = y,  with this condition � is called a strict modular on X.  

Definition 2.2. [14] Let �(  be a modular metric space. 

(1) The sequence ��) � )*+ in �( is said to be convergent to � � �(if 

        ����), �� → 0 �, � → ∞ ��� ��� � > � .  
(2) The sequence ��) � )*+ in �( is said to be Cauchy if 

       ����-, �)� → 0 �, ., � → ∞ ��� ��� � > � .  
(3) A subset C of �( is said to be closed if the limit of the convergent sequence of C always belong to C. 

(4) A subset C of �( is said to be complete if any Cauchy sequence in C is a convergent sequence and its limit in 

C.  

(5) A subset C of �( is said to be bounded if for all � > �                                       

         /(�0� = sup4����, ��; �, � � 05 < ∞. 
We recall the following definitions in metric spaces. 

Definition 2.3.Two self mappings S and T of a metric space (X, d) are said to be weakly commuting if   

��78�, 87�� ≤ ��7�, 8��, ∀� ∈ �. 
It is clear that two commuting mappings are weakly commuting, but the converse is not true.  

Definition2.4 [11]. Let T and S be two self mappings of a metric space (X, d). S and T are said to be compatible if 

                        lim)→∞ ��78�), 87�)�  = 0 , whenever 4�)5 is a sequence in X such that 

                       lim
)→∞

7�)  =  lim
)→∞

8�) = = , for some = ∈ �. 

Definition 2.5. Let X be a set, f, g self maps of X. A point x in X is called a coincidence point of � and > iff  fx = 

gx. We shall call w = fx = gx, a point of coincidence of f and g. 

Definition 2.6. Two maps S and T are said to be weakly compatible if they commute at coincidence points. 

Definition 2.7. Let S and T be two self mappings of a metric space (X, d). We say that T and S satisfy the property 

(E.A) if there exists a sequence 4�)5 such that 

                      lim
)→∞

8�)  =  lim
)→∞

7�) = =  ;  for some = ∈ �. 

Definition 2.8. Two pairs of self maps (I, S) and (J,T) of a metric space (X, d). We say that I, J, S, T satisfy the 

common property (E.A) if there exists two sequence 4�)5 and 4�)5 in X such that 

                    lim
)→∞

?�)  =  lim
)→∞

7�) = lim
)→∞

8�)  =  lim
)→∞

@�) = =   ;    for some = ∈ �. 

Definition 2.9. Two self-maps f and g of a set X are occasionally weakly compatible (owc) iff there is a point x in 

X which is a coincidence point of f and g at which f and g commute. 

We shall also need the following lemma from Jungck and Rhoades [7]. 

Lemma 2.1. Let X be a set, f, g owc self-maps of X. If f and g have a unique point of coincidence, w : = fx = gx, 

then w is a unique common fixed point of f and g. 

Thus we define the above definitions in modular metric spaces as- 

Definition 2.10. Let �(  be a modular metric space. Let �, >  self maps of �( . A point x in �(  is called a 

coincidence point of � ��� > �ff �� =  >�. We shall call A =  �� =  >�  a point of coincidence of � ��� >. 
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Definition 2.11. Two self mappings S and T of a metric space ��, ��  are said to be weakly commuting if  

���78�, 87�� ≤ ���7�, 8��, ∀� ∈ �( . 
Definition 2.12. Let �( be a modular metric space. Two maps f and g of �( are said to be weakly compatible if 

they commute at coincidence points. 

Definition 2.13. Let �(  be a modular metric space. Two self maps f and g of �(  are occasionally weakly 

compatible (owc) iff there is a point x in �( which is a coincidence point of f and g at which f and g commute. 

Definition 2.14. Let �( be a modular metric space. Let S and T be two self maps of �(, then S and T satisfy the 

property (E.A.) if there exist a sequence 4�)5 such that  

                      lim
)→∞

8�)  =  lim
)→∞

7�) = = ; for some = ∈ �( . 

Definition 2.15. Let �(  be a modular metric space. Let the two pairs of self maps �?, 7� and �@, 8� satisfy the 

common property (E.A.) if there exist a sequence 4�)5 and 4�)5 such that  

                      lim
)→∞

?�) = lim
)→∞

7�) = lim
)→∞

8�)  =  lim
)→∞

@�) = %       ;   for some % ∈ �( . 

Definition 2.16. [2] Let �( be a modular metric space induced by metric modular �. Two self mapping �, > of �(  

are �-compatible if �λ��>�), >��)� → 0, whenever 4�)5)BC
∞  is a sequence in �( such that >�) → % and T�) → % 

for some point % � �( and for � > 0. 

Lemma 2.2. Let �( be a modular metric space and �, > owc self-maps of �(. If f and g have a unique point of 

coincidence, A: =  �� =  >�, then w is a unique common fixed point of � and >. 
Definition 2.17. Two finite families of self maps 4?E5EBC

-  and F@GH
GBC

)
on a set �( are pairwise commuting  

(i) ?E ?G = ?G?E               �, I ∈ 41,2, … , .5 

(ii) @E @G = @G@E            �, I ∈ 41,2, … , �5 

(iii) ?E @G = @G?E         � ∈ 41,2, … , .5,   I ∈ 41,2, … , �5 

 

3.  IMPLICIT RELATIONS.  Let MN be the set of all continuous functions satisfying the following conditions:  

�OC�        ∅�Q, 0, Q, 0,0, Q� ≤ 0 ⟹ Q ≤ 0 

�OS�        ∅�Q, 0,0, Q, Q, 0� ≤ 0 ⟹ Q ≤ 0 

                       �OT�        ∅�Q, Q, 0,0, Q, Q� ≤ 0 ⟹ Q ≤ 0 ; for all 0 < Q. 
Example  

3.1 Define  �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                     F �=C, =S, =T, =U, =V, =N� =  =C − � YZY["Y\Y]

YZ"Y\
− ^=S min4=S, =T, =U5 ,           Aℎ`�`  �, ≥ 0. 

3.2 Define F �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                      b�=C, =S, =T, =U, =V, =N� = =C − c max 4=S, =T, =U, C
S

�=V + =N�5,        c��0,1�. 

3.3 Define F �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                      b�=C, =S, =T, =U, =V, =N� = =C − c max 4=S, =T, =U, C
S

=V + C
S

=N5,         c��0,1�. 

3.4 Define F �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                      b�=C, =S, =T, =U, =V, =N� = =C − c max 4=S, C
S

[=T + =U], C
S

[=V, =N5,     c��0,1�. 

3.5 Define F �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                      b�=C, =S, =T, =U, =V, =N� = =C − e
S

 max 4=S, =T, =U , C
S

=V, C
S

=N5,          c��0,1�. 

3.6 Define F �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                      b�=C, =S, =T, =U, =V, =N� = =C − =S + YZY\"Y[Y]

YZ"Y\
5,                                c��0,1� 
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3.7 Define F �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                      b�=C, =S, =T, =U, =V, =N� = =C − min 4=S, =T + =V, =U + =N5. 

3.8 Define F �=C, =S, =T, =U, =V, =N�: ℛ"
N → ℛ as  

                      b�=C, =S, =T, =U, =V, =N� = =C − min 4=S, =T, =V, =U, =N5. 

 

4.  OBSERVATIONS, RESULTS AND DISCUSSION 

Theorem 4.1. Let ��, �� be a complete modular metric space and I, J, S, T: �( → �( be self-mappings satisfying 

the conditions: 

 (4.1.1) Then �?, 7� and �@, 8� share common property (E.A.);   

(4.1.2) for any �, � ∈ �(, ∅ �� MN                           

                     ∅f�� �7�, 8���λ�?� , @��, �λ�7�, ?��, �λ�8�, @��, �λ�7�, @���Sλ�8�, ?��g ≤ 0 

(4.1.3) ?��(� ⊂ 8��(� and @��(� ⊂ 7��(� 

Then the pairs �?, 7� and �@, 8� share common (E.A.) property.  

Proof. Suppose the pair �?, 7� satisfy the property E.A., then there exist a sequence 4�) 5 in �( such that  

                      lim
)→∞

?�)  =  lim
)→∞

7�) = %      for some  % ∈ �( 

Since ?��(� ⊂ 8��(�, hence for each 4�) 5 there exist 4�) 5 in �( such that �)  =  8�) . 

Therefore, lim
)→∞

?�)  =  lim
)→∞

7�) = lim
)→∞

8�) = %.  

Now we claim that lim
)→∞

 @�) = %. 

Suppose that lim
)→∞

@�) ≠ %, then applying inequality (4.1.2), we obtain  

∅��� �?�), @�)�, �λ�7�), 8�)�, �λ�7�), ?�)�, �λ�8�), @�)�, �λ�7�), @�)�, �λ�8�), ?�)�� ≤ 0 

   ∅��� �%, lim)→∞ @�)�, �λ�%, %�, �λ�%, %�, �λ�%, lim)→∞ @�)�, �λ�%, lim)→∞ @�)�, �λ�%, %�� ≤ 0 

   ∅��� �%, lim)→∞ @�)�, 0,0, �λ�%, lim)→∞ @�)�, �λ�%, lim)→∞ @�)�, 0� ≤ 0 , 

which is a contradiction using �OS�; we get  

        �λ�%, lim)→∞ @�)� ≤ 0 

and therefore lim)→∞ @�) = %. 
Hence, the pairs �?, 7� and �@, 8� share the common property (E.A.). 

Theorem 4.2. Let ��, �� be a complete modular metric space and I, J, S, T: �( → �( be self-mappings satisfying 

the conditions (4.1.2) and  

(4.2.1) the pair �?, 7� and �@, 8� share common (E.A.) property,   

(4.2.2) 7��(� ��� 8��(� are closed subsets of �( . 
Then the pairs �?, 7� and �@, 8� have a point of coincidence each. Moreover ?, 7, @, 8 have a unique common fixed 

point provided both the pairs (I, S) and (J, T) are weakly compatible.  

Proof. Suppose the pair �?, 7� ��� �@, 8� satisfies common property (E.A.) there exist sequences 4�) 5 , 4�) 5 in �( 

such that  

                      lim
)→∞

?�)  =  lim
)→∞

7�) = lim
)→∞

8�)  =  lim
)→∞

@�) = %      for some  % ∈ �( 

Since 7��(� is a closed subset of �( , therefore there exists a point Q ∈ �( such that % = 7Q. 
We claim that ?Q = %. 
If  ?Q ≠ % , then by condition (4.1.2), take � = Q , � = �) 

∅��� �?Q, @�)�, �λ�7Q, 8�)�, �λ�7Q, ?Q�, �λ�8�), @�)�, �λ�7Q, @�)�, �λ�8�), ?Q�� ≤ 0 

taking the limit as � → ∞ , we get  

                                                       ∅��� �?Q, %�, �λ�%, %�, �λ�%, ?Q�, �λ�%, %�, �λ�%, %�, �λ�%, ?Q�� ≤ 0 
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     ∅��� �?Q, %�, 0, �λ�?Q, %�, 0,0, �λ�?Q, %�� ≤ 0 

      using �OC� we get                       �λ�?Q, %� ≤ 0. 
     which is a contradiction. 

Therefore ?Q = % = ,Q ,which shows that Q is a coincidence point of the pair �?, 7�. 

Since 8��(� is a closed subset of �(, therefore lim
)→∞

8�) = % in 8��(� and hence there exists a point j ∈ �( such 

that 8j = % = ?Q = 7Q. 
Now we show that @j = %. 

If  @j ≠ %, then by using (4.1.2), take � = Q , � = j we have  

       ∅��� �?Q, @j�, �λ�7Q, 8j�, �λ�7Q, ?Q�, �λ�8j, @j�, �λ�7Q, @j�, �λ�8j, ?Q�� ≤ 0 

       ∅��� �%, @j�, �λ�%, %�, �λ�%, %�, �λ�%, @j�, �λ�%, @j�, �λ�%, %�� ≤ 0 

       ∅��� �%, @j�, 0,0, �λ�%, @j�, �λ�%, @j�, 0� ≤ 0 

using �OS� we get                                �λ�%, @j� ≤ 0. 
which is a contradiction.  

Hence  @j = % = 8j , which shows that j is a coincidence point of the pair�@, 8�. 

Since the pairs �?, 7� and �@, 8� are weakly compatible and ?Q = 7Q = @j = 8j, therefore  

                           ?% = ?,Q = 7?Q = 7% , @% = @8j = 8@j = 8%. 
If ?% ≠ %,  then by using inequality (4.1.2), we have  

             ∅��� �?%, @j�, �λ�7%, 8j�, �λ�7%, ?%�, �λ�8j, @j�, �λ�7%, @j�, �λ�8j, ?%�� ≤ 0                      

              ∅��� �?%, %�, �λ�?%, %�, �λ�?%, ?%�, �λ�@j, @j�, �λ�?%, %�, �λ�%, ?%�� ≤ 0           

              ∅��� �?%, %�, �λ�?%, %�, 0,0, �λ�?%, %�, �λ�?%, %�� ≤ 0 

using �OT�   we get                                                  �λ�?%, %� ≤ 0. 
which is a contradiction.  

Hence  ?% = % = 7% .  

Similarly, one can prove that @% = 8% = %.Hence, ?% = @% = 7% = 8% and % is a common fixed point of ?, @, 7, 8. 
Uniqueness. Let % and A be two common fixed point of ?, @, 7, 8. 
If % ≠ A, then by using (4.1.2), we have  

∅��� �?%, @A�, �λ�7%, 8A�, �λ�7%, ?%�, �λ�8A, @A�, �λ�7%, @A�, �λ�8A, ?%�� ≤ 0 

            ∅��� �%, A�, �λ�%, A�, �λ�%, %�, �λ�A, A�, �λ�%, A�, �λ�A, %�� ≤ 0 

            ∅��� �%, A�, �λ�%, A�, 0,0, �λ�%, A�, �λ�%, A�� ≤ 0 

using �OT�   we get                                          �λ�%, A� ≤ 0. 
which is a contradiction. 

Therefore, % = A.  

Theorem 4.3. Let ��, �� be a complete modular metric space and I, J, S, T be self-mappings satisfying the 

conditions (4.1.2). If the pair �?, 7� and �@, 8� are owc, then I, J, S, T have a unique common fixed point. 

Proof. Since the pair �?, 7� and�@, 8�  are occasionally weakly compatible then there exist Q, j � �(. 

 Such that 7Q = ?Q and @j = 8j 

Now we can assert that 7Q = 8j, if not then by (4.1.2) 

∅f�� �7Q, 8j�, �� �?Q, @j�, �� �7Q, ?Q�, �� �8j, @j�, �� �7Q, @j�, �� �8j, ?Q�g < 0 

∅f�� �?Q, 8j�, �� �?Q, @j�, �� �?Q, ?Q�, �� �@j, @j�, �� �?Q, @j�, �� �@j, ?Q�g < 0 

            ∅f�� �?Q, 8j�, �� �?Q, @j�, 0,0, �� �?Q, @j�, �S� �@j, ?Q�g < 0; a contradiction of�OT�. 

Hence  7Q = 8j and thus 7Q = ?Q = 8j = @j                                                                      (4.3.1) 

Moreover, if there is another fixed point of coincidence z such that 7% = ?%, and using condition (4.1.2). 
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   ∅f�� �7%, 8j�, �� �?%, @j�, �� �7%, ?%�, �� �8j, @j�, �� �7%, @j�,  �� �8j, ?%�g < 0 

∅f�� �7%, 8j�, �� �7%, @j�, �� �7%, 7%�, �� �8j, 8j�, �� �7%, 8j�,  �� �8j, 7%�g < 0 

                                     ∅f�� �7%, 8j�, �� �7%, @j�, 0,0, �� �7%, 8j�,  �S� �8j, 7%�g < 0 

Again a contradiction of �OT�. 
Hence we get 

                          7% = ?% = 8j = @j                                                                                       (4.3.2) 

Thus from equation (1) and (2) it follows that 7% = 7Q.This implies % = Q. 

Hence % = 7Q = ?Q for some % � �( is the coincidence point of S and I. 

Then by lemma 2.2, z is a unique common fixed point of S and I. 

Hence  7% = ?% = %. 

Similarly, there is a another common fixed point  j� �( : j = 8j = @j 

Suppose  j ≠ % , then by (4.1.2) we have  

∅f �� �7%, 8j�, �λ�?% , @j�, �λ�7%, ?%�, �λ�8j, @j�, �λ�7%, @j�, �λ�8j, ?%�g < 0 

                                               ∅f �� �7%, 8j�, �λ�% , j�, �λ�%, %�, �λ�j, j�, �λ�%, j�, �λ�j, %�g < 0 

                                                                        ∅f�� �7%, 8j�, �λ�% , j�, 0,0, �λ�%, j�, �λ�j, %�g < 0 

Again a contradiction of �OT�. 
Hence z is a unique common fixed point of ?, @, 7, 8. 

Theorem 4.4 let 4?C, ?S, … , ?-5, 4@C, @S, … , @)5, F7C, 7S, … , 7pH, F8C, 8S, … , 8qH be four finite families of self maps of a 

modular metric spaces  �(  such that ? = ?C. ?S. … . ?-, @ = @C. @S. … . @) , 7 = 7C. 7S. … . , 7p, 8 = 8C. 8S. … . 8q  satisfy 

the condition (4.1.2). Moreover finite family of self maps ?E, 7e , @r and 8Y  have a unique common fixed point 

provided that the pairs of families �4?E5, 47e5� and �4@r5, 48Y5 � are owc for all � = 1,2, … , .   ,   c = 1,2, … , s , � =
1,2, … , �  , = = 1,2, … , t. 
Proof. Since self maps ?, 7, @, 8 satisfy all the conditions of theorem 4.3, the pairs �?, 7� and �@, 8� are owc and have 

a unique common fixed point. Also the pairs of families �4?E5, 47e5� and �4@r5, 48Y5 � are commute pairwise, we first 

show that ?7 = 7? as 

?7 = �?C?S … ?-��7C7S … 7p� = �?C?S … ?-uC��?-7C7S … 7p� 

                   = �?C?S … ?-uC��7C7S … 7p?-� = �?C?S … ?-uS��?-uC7C7S … 7p?-� 

                                 = �?C?S … ?-uS��7C7S … 7p?-uC?-� = ⋯ = ?C�7C7S … 7p?S … ?-� 

                                = f7C7S … 7pg�?C?S … ?-� = 7?. 

Similarly one can prove that @8 = 8@  and hence, obviously the pair �?, 7�and �@, 8�  are occasionally weakly 

compatible. 

Now using theorem 4.3, we conclude that ?, 7, @, 8 have a unique common fixed point in  �( , say %. 
Now, one needs to prove that % remains the fixed point of all the component maps. 

For this consider 

?�?E%� = ��?C?S … ?-�?E�% = �?C?S … ?-uC��?-?E�% 

                            = �?C?S … ?-uC��?E?-�% = �?C?S … ?-uS��?-uC?E?-�% 

             = �?C?S … ?-uS��?E?-uC?-�% = ?C�?E?S … ?-�% 

                                                              = �?C?E��?S … ?-�% 

                                                             = �?E?C��?S … ?-�% = ?E�?C?S … ?-�% = ?E?% = ?E%. 

Similarly, one can prove that  

                                    ?�7e%� = 7e�?%� = 7e% , 7�7e%� = 7e�7%� = 7e%,  
                                     7�?E%� = ?E�7%� = ?E% , @�@r%� = @r�@%� = @r%, 
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                                    @�8Y%� = 8Y�@%� = 8Y% , 8�8Y%� = 8Y�8%� = 8Y%, 
and  

                                  8�@r%� = @r�8%� = @r%, 
which shows that (for all �, �, c and =) ?E% and 7e% are other fixed point of the pair �?, 7� whereas @r% and 8Y% are 

other fixed point of the pair �@, 8�. 
As ?, @, 7 and 8 have a unique common fixed point, so, we get 

               % = ?E% = 7e% = @r% = 8Y% , for all � = 1,2, … , .,     c = 1,2, … , s, 
                                                                        � = 1,2, … , �,     = = 1,2, … , t, 
which shows that % is a unique common fixed point of 4?E5EBC

-  , 47e5eBC
p  , 4@r5rBC

)  and 48Y5YBC
q . 

Corollary 4.5 The conclusion of Theorem 4.2 and 4.3 remain true if the inequality (4.1.2) is replaced by the 

following conditions.  

(4.5) �λ�?� , ?�� ≤ c max4�� �7�, 7��, �λ�7�, ?��, �λ�?�, 7��, C
S

[�λ�7�, ?�� + �λ�?�, 7��]5  

                                                                                                                                                    , c��0,1�.  
(4.6) �λ�?� , ?�� ≤ c max4�� �7�, 7��, �λ�7�, ?��, �λ�?�, 7��, C

S
�λ�7�, ?��, C

S
�λ�?�, 7��5 

                                                                                                                                                   , c��0,1�. 
(4.7) �λ�?� , ?�� ≤ c max4�� �7�, 7��, C

S
[�λ�7�, ?�� + �λ�?�, 7��], C

S
[�λ�7�, ?��, C

S
�λ�?�, 7��]5   , c��0,1�. 

(4.8) �λ�?� , ?�� ≤ e
S

max4�� �7�, 7��, �λ�7�, ?��, �λ�?�, 7��, C
S

�λ�7�, ?��, C
S

�λ�?�, 7��5         , c��0,1�.  

(4.9) �λ�?� , ?�� ≤ �C �� �7�, 7�� + wx(λ�yz,{z�,(λ�{|,y|�"wZ(λ�yz,{|�,(λ�{z,y|�

(λ�yz,{z�"(λ�{|,y|�
 ,  

        where  �C, �S, �T ≥ 0 such that 1 < 2�C+�S < 2. 
 

CONCLUSION.  

 In this paper, we proved some general common fixed point theorems for owc mappings satisfying an implicit 

function in modular metric spaces which generalizes several results from the literature. In process, our results 

generalize several fixed point theorems in following respects. 

(i) The class of modular metric spaces is a generalization of a metric spaces.  

(ii) The class of implicit functions is also enriched significantly as it requires merely one condition to satisfy. 

(iii)  The condition on completeness/compactness of the space is completely relaxed. 

(iv)  The condition of weak compatibility is weakened to owc. 

In proving fixed point theorems for four maps, step one is by far the most difficult part of the proof. In theorem 4.3 

we have imposed the condition owc, which automatically gives the result of step one. Other author have 

circumvented this difficulty by hypothesizing a property, known as property (E.A.), which implies owc.  
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ABSTRACT : 

DNA microarray is an efficient new technology that allows to analyze, at the same time, the expression level of 

millions of genes.. In DNA microarray technology, gene classification is considered to be difficult because the 

attributes of the data, are characterized by high dimensionality and small sample size. Classification of tissue 

samples in such high dimensional problems is a complicated task. Furthermore, there is a high redundancy in 

microarray data and several genes comprise inappropriate information for accurate classification of diseases or 

phenotypes. Consequently, an efficient classification technique is necessary to retrieve the gene information 

from the microarray experimental data. In this paper, a classification technique is proposed that classifies the 

microarray gene expression data well. In the proposed technique, the dimensionality of the gene expression 

dataset is reduced by Probabilistic PCA. Then, an Artificial Neural Network (ANN) is selected as the supervised 

classifier and it is enhanced using Evolutionary programming (EP) technique. The enhancement of the 

classifier is accomplished by optimizing the dimension of the ANN. The enhanced classifier is trained using the 

Back Propagation (BP) algorithm and so the BP error gets minimized. The well-trained ANN has the capacity of 

classifying the gene expression data to the associated classes. The proposed technique is evaluated by 

classification performance over the cancer classes, Acute Myeloid leukemia (AML) and Acute Lymphoblastic 

Leukemia (ALL). The classification performance of the enhanced ANN classifier is compared over the existing 

ANN classifier and SVM classifier. 

Keywords: Microarray gene expression data, Probabilistic PCA (PPCA), Artificial Neural Network (ANN), 

Evolutionary Programming (EP), Back Propagation (BP), Supervised Classifier, Dimensionality reduction 

 

1.  INTRODUCTION 

 Enormous amount of genomic and proteomic data are available in the public domain.  The ability to process 

this information in ways that are useful to humankind is becoming increasingly important [1]. The computational 

recognition is a basic step in the understanding of a genome and it is one of the challenges in the analysis of newly 

sequenced genomes. For analyzing genomic sequences and for interpreting genes, precise and fast tools are 

necessary [2]. In such situation, conventional and modern signal processing methods play a significant role in these 

fields [1].  A relatively new area in bio-informatics is Genomic signal processing [14] (GSP). It deals with the 

utilization of traditional digital signal processing (DSP) methods in the representation and analysis of genomic data.  

 Gene is a segment of DNA, which contains the code for the chemical composition of a particular protein. Genes 

serve as the pattern for proteins and some additional products, and mRNA is the main intermediary that translates 

gene information in the production of genetically encoded molecules [4]. The strands of DNA molecules usually 
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contain the genomic information represented by sequences of nucleotide symbols, symbolic codons (triplets of 

nucleotides), or symbolic sequences of amino acids in the corresponding polypeptide chains [2]. Simultaneously 

monitoring of the expression levels of tens of thousands of genes under diverse experimental conditions has been 

enabled by gene expression microchip, which is perhaps the most rapidly expanding tool of genome analysis. This 

provides a powerful tool in the study of collective gene reaction to changes in their environments, and provides 

indications about the structures of the involved gene networks [3].  

 Today, using microarrays it is possible to simultaneously measure the expression levels of thousands of genes, 

possibly all genes in an organism, in a single experiment [4]. Microarray technology has become an indispensable 

tool in the monitoring of genome-wide expression levels of gene [5]. The analysis of the gene expression profiles in 

various organs using microarray technologies reveal about separate genes, gene ensembles, and the metabolic ways 

underlying the structurally functional organization of organ and its physiological function [6]. Diagnostic task can 

be automated and the accuracy of the conventional diagnostic methods can be improved by the application of 

microarray technology. Microarray technology enables simultaneous examination of thousands of gene expressions 

[7]. 

Efficient representation of cell characterization at the molecular level is possible with microarray technology which 

simultaneously measures the expression levels of tens of thousands of genes [8]. Gene expression analysis [10] [18] 

that utilizes microarray technology has a wide range of potential for exploring the biology of cells and organisms 

[9]. Microarray technology assists in the precise prediction and diagnosis of diseases. Three common types of 

machine learning techniques utilized in microarray data analysis are clustering [11] [15], classification [12] [16], 

and feature selection [13] [17]: Of these, classification plays a crucial role in the field of microarray technology. 

However, classification in microarray technology is considered to be very challenging because of the high 

dimensionality and small sample size of the gene expression data. Numerous works have been carried out for the 

effective classification of the gene expression data. A few recent works available in the literature are reviewed in 

the following section. 

Katharina J Hoff et.al. proposed a new combination of feature selection/extraction approach for Artificial Neural 

Networks ANNs classification of high-dimensional microarray data, which uses an Independent Component 

Analysis ICA as an extraction technique and Artificial Bee Colony ABC as an optimisation technique [30]. 

Microarray gene expression based medical data classification has remained as one of the most challenging research 

areas in the field of bioinformatics, machine learning and pattern classification. [31]. DNA microarray is an 

efficient new technology that allows analyzing, at the same time, the expression level of millions of genes [32]. 

 

2.  RELATED WORKS 

 Some of the recent related research works are reviewed here. Liu et al. [19] have offered an analytical method 

for categorizing the gene expression data. In the proposed method, dimension reduction has been achieved by 

utilizing the kernel principal component analysis (KPCA) and categorization has been achieved by utilizing the 

logistic regression (discrimination). KPCA is a generic nonlinear form of principal component analysis. Five varied 

gene expression datasets related to human tumor samples has been categorized by utilizing the proposed algorithm. 

The high potential of the proposed algorithm in categorizing gene expression data has been confirmed by 

comparing with other well-known classification methods like support vector machines and neural networks. 
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Roberto Ruiz et al. [20] have proposed a novel heuristic method for selecting appropriate gene subsets which can be 

utilized in the classification task. Statistical significance of the inclusion of a gene to the final subset from an 

ordered list is the criteria on which their method is based. Comparison result has proved that the method was more 

effective and efficient than other such heuristic methods. Their method exhibits outstanding performance both in 

identification of important genes and in minimization of computational cost. 

Peng et al. [21] have performed a comparative analysis on different biomarker discovery methods that includes six 

filter methods and three wrapper methods. After this, they have presented a hybrid approach known as FR-Wrapper 

for biomarker discovery. The objective of their approach was to achieve an optimum balance between precision and 

computation cost, by exploiting the efficiency of the filter method and the accuracy of the wrapper method. In their 

hybrid approach, the majority of the unrelated genes have been filtered out utilizing the Fisher’s ratio method, 

which is simple, easy to understand and implement. Then the redundancy has been minimized utilizing a wrapper 

method. The performance of the FR-Wrapper approach has been appraised utilizing four widely used microarray 

datasets. Experimental results have proved that the hybrid approach is capable of achieving maximum relevance 

with minimum redundancy. 

 Mramor et al. [22] have proposed a method for the analysis of gene expression data that gives an unfailing 

classification model and gives useful insight of the data in the form of informative perception. The proposed 

method is capable of finding simple perceptions of cancer gene expression data sets utilizing a very small subset of 

genes by projection scoring and ranking however presents a clear visual classification between cancer types. They 

have proposed in view of data visualization’s promising part in penetrative data analysis, short runtimes and 

interactive interface, that data visualization would enhance other recognized techniques in cancer microarray 

analysis assisted by efficient projection search methods and become part of the standard analysis toolbox. Wong et 

al. [23] have proposed regulation-level method for symbolizing the microarray data of cancer classification that can 

be optimized utilizing genetic algorithms (GAs). The proposed symbolization decreases the dimensionality of 

microarray data to a greater extent compared with the traditional expression-level features. Several statistical 

machine-learning methods have become usable and efficient in cancer classification because noise and variability 

can be accommodated in the proposed symbolization. It has been confirmed that the three regulation level 

representation monotonically converges to a solution by experimental results on real-world microarray datasets. 

This has confirmed the presence of three regulation levels (up-regulation, down-regulation and non-significant 

regulation) associated with each particular biological phenotype. In addition to improvement to cancer 

classification capability, the ternary regulation-level promotes the visualization of microarray data. 

 Ahmad M. Sarhan [7] has developed an ANN and the Discrete Cosine Transform (DCT) based stomach cancer 

detection system.  Classification features are extracted by the proposed system from stomach microarrays utilizing 

DCT. ANN does the Classification (tumor or no-tumor) upon application of the features extracted from the DCT 

coefficients. In his study he has used the microarray images that were obtained from the Stanford Medical Database 

(SMD). The ability of the proposed system to produce very high success rate has been confirmed by simulation 

results. Papachristoudis et al. [24] have offered SoFoCles, an interactive tool that has made semantic feature 

filtering a possibility in microarray classification problems by the utilization of external, unambiguous knowledge 

acquired from the Gene Ontology. By improving an initially created feature set with the help of legacy methods, 

genes that are associated with the same biological path during the microarray experiment are extracted by the 
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utilization of the idea of semantic similarity. As one of its many functions, SoFoCles offers a huge repository of 

semantic similarity methods for deriving feature sets and marker genes. Discussion about the structure and 

functionality of the tool, and its ability in improving the classification accuracy has been given in detail. By means 

of experimental evaluation, the improved classification accuracy of the SoFoCles has been demonstrated utilizing 

different semantic similarity computation methods in two real datasets  

 Debnath et al. [25] have proposed an evolutionary method that is capable of selecting a subset of potentially 

informative genes that can be used in support vector machine (SVM) classifiers. The proposed evolutionary method 

estimates the fitness function utilizing SVM and a specified subset of gene features, and new subsets of features 

were chosen founded on the frequency of occurrence of the features in the evolutionary approach and amount of 

generalization error in SVMs. Hence, theoretically, the selected genes reflect the generalization performance of 

SVM classifiers to a certain extent. Comparison with several existing methods has confirmed that better 

classification accuracy can be achieved by the proposed method with fewer numbers of selected genes. From the 

review, it can be seen that most of the recent works have performed the classification using selective gene 

expression data. The selected gene expression sub-dataset has been optimized and classified using traditional 

classifiers. Though the optimization is effective the ultimate objective is not attained because the effectiveness of 

classification is inadequate. Hence, the enhancement of classifier becomes an essential pre-requisite for effective 

classification of microarray gene expression data.  

Maxwell W. Libbrecht and William Stanfford Noble presented considerations and recurrent challenges in the 

application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative 

and discriminative modeling approaches and they provided general guidelines to assist in the selection of these 

machine learning methods and their practical application for the analysis of genetic and genomic data sets. [28] 

 Zena M. Hira and Duncan F. Gillies summarized various ways of performing dimensionality reduction on high-

dimensional microarray data. Many different feature selection and feature extraction methods exist and they are 

being widely used. All these methods aim to remove redundant and irrelevant features so that classification of new 

instances will be more accurate. A popular source of data is microarrays, a biological platform for gathering gene 

expressions. Analysing microarrays can be difficult due to the size of the data they provide. In addition the 

complicated relations among the different genes make analysis more difficult and removing excess features can 

improve the quality of the results. We present some of the most popular methods for selecting significant features 

and provide a comparison between them. Their advantages and disadvantages are outlined in order to provide a 

clearer idea of when to use each one of them for saving computational time and resources. [29] 

 In this paper, proposes an effective classification technique that uses an enhanced supervised classifier. It is 

well known that microarray gene expression datasets are characterized by high dimension and small sample size. 

The dimension of the gene expression dataset is reduced using PPCA. With the aid of the dimensionality reduced 

gene expression dataset, the ANN, which is selected as supervised classifier in our work, is enhanced using EP 

technique. The enhanced classifier is utilized for classification and so it is trained using BP algorithm. The well-

trained classifier is then subjected to the classification of microarray gene expression dataset.  The rest of the paper 

is organized as follows. Section 3 details the proposed classification technique with required mathematical 

formulations and illustrations. Section 4 discusses about the implementation results and Section 5 concludes the 

paper.  
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3.  CLASSIFICATION TECHNIQUE FOR MICROARRAY GENE EXPRESSION DATA  

 Here, an efficient technique to classify microarray gene expression data is proposed. The proposed technique is 

comprised of three fundamental processes, namely, dimensionality reduction, development of supervised classifier 

and gene classification. The development of enhanced supervised classifier is illustrated in the Fig. 1 and the 

training process is depicted in Fig. 2.  

 

 
Figure 1: Enhancement of Feed Forward ANN using EP technique 
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Figure 2: Training process of enhanced supervised classifier using BP algorithm 

 

The dimensionality reduction involves the process of reducing the dimension of the microarray gene expression 

data using PPCA. In the second process, a supervised classifier is developed using feed forward ANN, which is 

enhanced using EP technique. In the gene classification, the enhanced classifier is trained using the gene expression 

data and then the testing process is conducted. So, given a microarray gene expression data, the classifier 

effectively classifies the data by representing the class to which the data belongs. 

 

3.1. Dimensionality Reduction using PPCA 

Let, the microarray gene expression data be 10,10; −≤≤−≤≤ gsjk Nk  Nj   M , where, sN  represents the 

number of samples and gN represents the number of genes. The dimension of gene data is higher and so it is 

subjected to dimensionality reduction. In dimensionality reduction, the high dimensional gene data jkM  is 

converted to a low dimensional gene data. To reduce the dimensionality, we use PPCA, which is a PCA with the 

presence of probabilistic model for the data. The PPCA algorithm composed by Tipping and Bishop [26] is capable 

of calculating a low dimensional representation utilizing a rightly formed probability distribution of the higher 

dimensional data.  

The instinctive attraction of the probabilistic representation is because of the fact that the definition of the 

probabilistic measure allows comparison with other probabilistic techniques, at the same time making statistical 

testing easier and permitting the utilization of Bayesian methods. Dimensionality reduction can be achieved by 

making use of PPCA as a generic Gaussian density model. Dimensionality reduction facilitates efficient 

computation of the maximum-likelihood estimates for the parameters connected with the covariance matrix from 

the data principal components. By performing the dimensionality reduction using PPCA, microarray gene 

expression data of dimension gs NN ×  is reduced to
''
gs NN × . The dimensionality reduced matrix is given as M

^
. 

Other than dimensionality reduction, the PPCA finds more practical advantages such as finding missing data, 

classification and novelty detection [26].   
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3.2. Enhancement of Feed Forward ANNs 

Here, an enhanced supervised classifier using multi-layer feed forward ANNs is developed. The enhancement of 

the neural network is accomplished by optimizing the dimension of the hidden layer using EP technique. EP is a 

stochastic optimization strategy primarily formulated by Lawrence J. Fogel in 1960, which is similar to genetic 

algorithm, but it stresses on the behavioral linkage between parents and their offspring instead of attempting to 

imitate specific genetic operators as seen in nature. The EP technique is comprised of (1) population initialization, 

(2) fitness calculation (3) selection and (4) mutation. The EP technique used to enhance the classifier is discussed 

below. 

Step1: A population set aX ; 1Na0 p −≤≤  is initialized, where, aX  is an arbitrary integer generated within the 

interval )1,0( +HN  and pN  is the population size.  

Step 2: pN  neural networks, each with an input layer, a hidden layer and an output layer are designed. In every 

tha  neural network, 
'
sN  (dimensionality reduced) input neurons and a bias neuron, aX  hidden neurons and a bias 

neuron and an output neuron are present.  

Step 3: The designed NN is weighted and biased randomly. The developed NN is shown in Fig. 3. 

 
Figure 3: The ANN developed with hidden neurons that are recommended by EP individuals 

 

Step 4: The basis function and activation function are selected for the designed NN as follows 
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Eq. (1) is the basis function (given only for input layer), Eq. (2) and Eq. (3) represents the sigmoid and identity 

activation function, which is selected for hidden layer and output layer respectively. In Eq. (1), M
^

is the 

dimensionality reduced microarray gene data, jkw  is the weight of the neurons and α  is the bias. The basis 

function given in Eq. (1) is commonly used in all the remaining layers (hidden and output layer, but with the 

number of hidden and output neurons, respectively). The M
^

is given to the input layer of the pN  ANNs and the 

output from the all those ANNs are determined.  

 

Step 5: The learning error is determined for all the pN  networks as follows 

 

∑
−

=

−=

1

0
'

'

1 sN

b

ab

s

a YD
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where, aE  is the error in the 
tha  NN, D  is the desired output and abY  is the actual output.  

 

Step 6: Fitness is determined for every individual, which is present in the population pool, using the fitness 

function as follows 

 

 

∑
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Step 7: The individuals which have maximum fitness are selected for the evolutionary process, mutation. So, 

2pN individuals are selected from the population pool and subjected to mutation. 

 

Step 8: In mutation, new 2pN  individuals newX  are generated to fill the population pool and the generation is 

given as follows 
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In Eq. (6), the mutation set dM  is determined as 
lbest

ind N-M M =  , where, },,3,2,1{ µL=inM ; µ  is the 

median of 
lbestN and 

lbestN  is a set of best individuals that has maximum fitness  
1dM is determined as
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'
dd MM ∪ , where, 

'
dM is a set of random integers that are generated within the interval )1,( +HNµ . The set 

'
dM  is generated in such a way that it satisfies the following conditions 

 

(i) dPd MNM −= 2'
        (7) 

(ii) φ=∩
lbest

d NM
'

         (8) 

 

In Eq. (6), 
2dM is the set of random elements which are taken from the set dM  such that 2 

2 Pd NM =  and 

ind MM ⊂
2

. 

 

Step 9: The newly obtained individuals newX  occupy the population pool and so the pool retains its size pN . 

Then, NNs are developed as per the individuals present in the new population pool and the process is iteratively 

repeated until it reaches the maximum number of iteration 
1maxI .  Once, the process is completed, the best 

individual is obtained from the population pool based on the fitness value.  

 

Step 10: The obtained best individual is stored and the process is again repeated from step1 for 
2maxI  iterations. 

In each iteration, a best individual is obtained and so 
2maxI  best individuals (the best individual represents number 

of hidden units, which is termed as bestH ) are obtained after completion of all the iterations.  

Among  the 
2maxI  iterations, the best individual which has maximum frequency i.e. the individual, which is 

selected as best for the most number of times is selected as the final best individual. Thus obtained best individual 

is selected as the dimension of the hidden layer and so the NN is designed. Hence, an enhanced NN is developed by 

optimizing the dimension of the hidden layer using the EP technique.  

 

3.3. Classification of Microarray Gene Expression using the Enhanced Classifier 

In the classification of microarray gene expression data, two phases of operation are performed that include training 

phase and testing phase. In the training phase, the enhanced supervised classifier is trained using the BP algorithm. 

The dimensionality reduced microarray gene expression dataset is utilized to train the NN.  

 

3.3.1. Training Phase: Minimization of Error by BP algorithm 

The training phase of the NN using BP algorithm is discussed below. 

(1) The weights are randomly generated within the interval [ ]1,0  and assigned to the hidden layer as well as output 

layer. For input layer, the weights maintain a constant value of unity.  

 

(2) The training gene data sequence is given to the NN so that the BP error is determined using the Eq. (4). The 

basis function and transfer function are similar to that used in the optimization (given in Eq. (1), Eq. (2) and Eq. 

(3)). 

 

(3) When the BP error is calculated, the weights of all the neurons are adjusted as follows 
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jkjkjk www ∆+=             (9) 

 

In Eq. (3), jkw∆ is the change in weight which can be determined as  E yw jkjk ..γ=∆ , where, E is the BP error 

and γ  is the learning rate, usually it ranges from 0.2 to 0.5.  

 

(4) Once the weights are adjusted as per the Eq. (9), the process is repeated from step 2 until the BP error gets 

minimized to a least value. Practically, the criterion to be satisfied is 1.0<E .  

The BP algorithm is terminated when the error gets minimized to a minimum value, which construes that the 

designed ANN is well trained for its further testing phase.  

 

3.3.2. Testing Phase: Classification of given Microarray Gene Sequence 

In the training phase, the ANN learns well about the training gene sequence and the class under which it is present.  

The well-trained ANN can classify the microarray gene sequence in an effective manner. Given a test sequence, the 

dimensionality reduction is performed using the PPCA. The dimensionality reduced gene sequence is given as input 

to the well-trained enhanced supervised classifier. The classifier effectively classifies the gene sequence by 

determining the class to which it belongs. The supervised classifier is designed with the intention of classifying the 

microarray gene sequence and hereby, it is accomplished well.  

 

4.  RESULTS AND DISCUSSION 

The proposed classification technique is implemented in the MATLAB platform (version 7.8) and it is 

evaluated using the microarray gene expression data of human acute leukemias. The standard leukemia dataset for 

training and testing is obtained from [27]. The training leukemia dataset is of dimension 7192=gN  and 

38=sN . This high dimensional training dataset is subjected to dimensionality reduction using PPCA and so a 

dataset of dimension 30=gN  and 38=sN  is obtained. In developing the enhanced supervised classifier, the 

dimensionality reduced microarray gene dataset is used to find the optimal dimension of the hidden layer. The 

enhancement of the ANN is performed with the parametric values given in the Table I. In each iteration, the error 

gets minimized and the optimal value for the dimension of the hidden layer is found. While enhancing ANN, the 

error, which is determined for different iterations and the calculated fitness, while enhancing ANN, are depicted in 

the Fig. 4. The training of enhanced ANN classifier is implemented using the Neural Network Toolbox in 

MATLAB. The error versus epochs, which is obtained in the training of ANN using BP, is illustrated in Fig. 5.  

 

Table I: EP parameters used in the enhancement of ANN 

S.No EP Parameters Values 

1 pN  
10 

2 HN  20 

3 D  
0.25 (for ALL) 

0.75 (for AML) 

4 1maxI  
50 

5 2maxI  
100 
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Figure 4: EP performance in enhancement of ANN classifier:  

(a) Error versus Number of iterations and (b) Fitness versus Number of iterations. 

 

 

Figure 5: Performance of BP in training the enhanced ANN 

 

Once the enhanced supervised classifier is developed and trained well, the classification is performed by providing 

the microarray gene expression test dataset. The classifier detects the type of cancer from the dataset with a good 

accuracy. The significance of the enhanced ANN classifier is demonstrated by comparing its classification 
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performance with that of the existing ANN classifier. The comparison results are provided in the Table II. 

Moreover, the performance of the classifier is also compared with the existing SVM classifier and the results are 

given in the Table III.  

Table II: Comparison between enhanced ANN classifier and existing ANN classifier 

Cancer 

class 

Enhanced ANN 

classifier Hbest=4 
Existing ANN classifier 

Classification 

accuracy  

(in %) 

Error 

rate 

(in %) 

H=2 H=6 H=8 

Classification 

accuracy  

(in %) 

Error 

rate 

(in %) 

Classification 

accuracy 

(in %) 

Error 

rate 

(in %) 

Classification 

accuracy 

(in %) 

Error 

rate 

(in %) 

ALL 92.5926 7.4074 70.3704 29.6296 55.5556 44.4444 88.8889 11.1111 

AML 90.9091 9.0909 83.1845 16.8155 63.7314 36.2686 81.9983 18.0017 

 

Table III: Comparison between enhanced ANN classifier and existing SVM classifier 

Cancer 

class 

Enhanced ANN classifier Existing SVM classifier 

Classification accuracy  

(in %) 

Error rate 

(in %) 

Classification accuracy  

(in %) 

Error rate 

(in %) 

ALL 92.5926 7.4074 70.3704 29.6296 

AML 90.9091 9.0909 72.7273 27.2727 

 

The comparison results given in the Table demonstrate that the classification accuracy of the enhanced classifier 

with optimized hidden layer dimension is good, and 90% more than that of the ANN classifier with arbitrary hidden 

layer dimension. From Table II and Table III results, it can be seen that the proposed technique has good 

classification accuracy and less error rate when compared with the SVM classifier. The results show that the 

enhanced supervised classifier performs well in classifying the microarray gene expression dataset.  

 

5.  CONCLUSION 

 In this paper, we propose an efficient classification technique with an enhanced supervised classifier using 

ANN. The proposed technique has been demonstrated by performing the classification of AML and ALL cancers. 

The implementation results have shown that the classification of the cancer is performed with good classification 

rate. The better classification performance is achieved mainly because of the enhancement of the ANN. The 

enhancement is performed with the intention of finding the dimension of the hidden layer such that the error is 

minimized. Using the EP, an optimal dimension for hidden layer has been identified. The training of ANN using BP 

has reduced the BP error to a considerable amount. The comparison results for existing ANN classifier and SVM 

classifier has demonstrated that the classification accuracy is more in the enhanced ANN classifier rather than the 

other classifier. Hence, it can be concluded that the proposed classification technique is more effective in 

classifying the microarray gene expression data for cancers with remarkable classification accuracy. 
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